Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
Шрифт:
И главное, так как частицы КК чрезвычайно легкие, их можно легко рождать. Коллайдеры уже работают при энергиях, достаточных для рождения этих частиц. Даже обычные физические процессы, например химические реакции, порождают достаточно энергии, чтобы образовать КК-партнеров гравитона. Если бы частицы КК переносили много энергии в пятимерный балк, теория была бы неверной.
К счастью, оказывается, что ни одно из этих предположений не является проблемой. Когда мы рассчитывали функции вероятности для частиц КК, мы нашли, что КК-партнеры гравитона взаимодействуют очень слабо на Гравитационной бране или вблизи нее. Несмотря на большое число КК-партнеров гравитона, все они взаимодействуют столь слабо, что нет никакой опасности произвести слишком большое их количество, или где-то изменить форму гравитационного взаимодействия. Если и есть какая-то проблема, она состоит
Слабость взаимодействий КК-партнеров гравитона можно понять, взглянув на форму их функций вероятности. Как и для гравитона, они указывают на вероятность, с какой любая частица может быть обнаруженны в любом положении вдоль пятого измерения. Раман и я следовали более или менее стандартной процедуре нахождения масс и функций вероятности каждого КК-партнера гравитона в нашей закрученной геометрии. Это включало решение квантово-механической задачи.
Для плоского пятого измерения описанная в гл. 6 квантово-механическая задача состояла в том, чтобы найти волны, которые укладываются на закрученном в кольцо измерении, и тем самым проквантовать разрешенные энергии [177] . Для нашей закрученной бесконечной пятимерной геометрии квантово-механическая проблемы выглядела несколько иначе, так как нам нужно было учесть энергию на бране и в балке, которые закручивали пространство-время. Но мы сумели модифицировать стандартную процедуру так, чтобы она походила для нашей схемы. Результаты оказались ошеломляющими.
177
Свернутое в окружность пространство с математической точки зрения «плоское». Это следует из того, что вы можете его раскатать в нечто плоское; для сферы, например, это не так.
Первая частица КК, которую мы нашли, была частицей без импульса в пятом измерении. Функция вероятности этой частицы была сильно сконцентрирована на Гравитационной бране и экспоненциально убывала вдали от нее. Эта форма выглядела знакомой: это была функция вероятности для того же четырехмерного гравитона, которую мы уже обсуждали. Такая безмассовая мода КК есть четырехмерный гравитон, переносящий ньютоновский четырехмерный закон тяготения.
Однако остающиеся частицы КК очень разные. Ни одна из них, похоже, не находится вблизи Гравитационной браны. Вместо этого, мы нашли, что для любого значения массы между нулем и планковским масштабом масс существуют частица КК с этой конкретной массой, и функция вероятности каждой из этих частиц имеет максимум в разных местах вдоль пятого измерения.
На самом деле существует интересная интерпретация локализации разных пиков. В гл. 20 мы видели, что для того, чтобы рассматривать все частицы на равном основании в четырехмерной эффективной теории в закрученном пространстве-времени, так чтобы все они одинаково взаимодействовали с гравитацией, мы по-разному изменяем масштаб всех расстояний, моментов времени, энергий и импульсов вдоль пятого измерения. При перемещении в сторону от браны, каждая точка ассоциируется с экспоненциально уменьшающейся энергией. Именно поэтому частицы на Слабой бране имеют массы порядка ТэВ. Тень путешествующей Афины из пятого измерения становится больше, а сама Афина становится легче, когда она движется от Гравитационной браны к Слабой бране.
Каждая точка вдоль пятого измерения может быть сопоставлена таким же образом с конкретной массой; масса связывается с планковским масштабом масс путем изменения масштаба в этой точке. Частица КК, функция гравитации которой имеет максимум в определенной точке, имеет приблизительно такую же изменившую масштаб массу. Когда вы перемещаетесь в пятом измерении, вы сталкиваетесь последовательно со все более легкими частицами КК в точках, где их функции вероятности достигают максимума.
На самом деле можно сказать, что спектр КК представляет крайне сегрегированное общество. Тяжелые частицы КК изгоняются из областей пространства, где изменившая масштаб энергия слишком мала, чтобы их образовать. Легкие частицы КК встречаются редко в тех областях, которые содержат частицы больших энергий. При заданной массе, частицы КК концентрируются как можно дальше от Слабой браны. Их положения напоминают то, как сидят модные штаны на подростках — настолько мешковато-большие, насколько это возможно, чтобы только не упасть. К счастью, законы физики, определяющие местоположение частиц КК, легче понять, чем подростковую моду.
Для нас самым важным свойством функций вероятности для легких частиц КК является то, что на Гравитационной бране они очень малы. Это означает, что есть только малая вероятность найти частицы КК вблизи этой браны или на ней. Поскольку легкие частицы КК как можно сильнее шарахаются от Гравитационной браны, легкие частицы (помимо гравитона, функция вероятности которого имеет максимум на Гравитационной бране) будут рождаться очень редко. Кроме того, легкие частицы КК несущественно модифицируют закон гравитационного взаимодействия, так как они имеют тенденцию держаться подальше от Гравитационной браны и поэтому слабо взаимодействуют с частицами, закрепленными на бране.
Собрав все это вместе, Раман и я решили, что нам удалось найти теорию, которая работает. Локализованный на Гравитационной бране гравитон ответствен за появление четырехмерной гравитации. Несмотря на большое количество КК-партнеров гравитона, они взаимодействуют так слабо на Гравитационной бране, что их проявления совершенно незаметны. И несмотря на существование бесконечного пятого измерения, все физические законы и процессы, включая гравитационные, кажется согласуются с тем, что ожидается в четырехмерном мире. В этом сильно закрученном пространстве допустимо бесконечное дополнительное измерение.
Как было ранее отмечено, с наблюдательной точки зрения такая модель несколько разочаровывает. Как ни удивительно может показаться, эта пятимерная модель так хорошо имитирует четыре измерения, что крайне тяжело разделить их. Экспериментаторов, занимающихся физикой частиц, безусловно, ждут тяжелые времена.
Однако физики начали исследовать астрофизические и космологические свойства, которые могли бы разделить два мира. Многие физики [178] рассматривали черные дыры в закрученном пространстве-времени, и продолжают исследовать, существуют ли отличительные свойства, которые мы могли бы использовать для определения того, во вселенной какого типа мы на самом деле живем.
178
Среди них Хуан Гарсия-Беллидо, Эндрю Чэмблин, Роберто Эмпаран, Рут Грегори, Стивен Хокинг, Гэри Горовиц, Неманья Калопер, Роберт Майерс, Харви Реал, Джиза-аки Шинкай, Тетсуа Ши-ромидзу и Тоби Вайзман.
В настоящее время мы знаем, что локализация — это новая и заманчивая теоретическая возможность для существования в нашей вселенной дополнительных измерений. Я страстно ожидаю дальнейших исследований, которые могли бы окончательно определить, является ли это истинным свойством нашего мира.
• Измерение может быть бесконечно длинным, но невидимым, если пространство-время должным образом закручено.
• Гравитацию можно локализовать, даже если она не закреплена жестко в конечной области.
• В локализованной гравитации безмассовая частица КК есть локализованный гравитон. Он концентрируется вблизи Гравитационной браны.
• Все другие частицы КК концентрируются вдали от Гравитационной браны; форма их функции вероятности и положения, где эти функции достигают максимума, зависят от их массы.
Глава 23
Задумчивый и раздвигающий пассаж
Someday girl I don’t know when
We’re gonna get to that place
Where we really want to go.
Bruce Springsteen [179]
179
Когда-нибудь, девочка, я не знаю, когда,
Мы доберемся то того места,
Куда мы действительно хотели прийти.
Брюс Спрингстин