Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
Шрифт:
Теории, в которых объекты взаимодействуют с большой силой, почти никогда не поддаются интерпретации без альтернативного описания со слабым взаимодействием. И в этом случае таким разумным описанием является пятимерная теория. Только пятимерная теория допускает достаточно простую подходящую для вычислений формулировку, поэтому имеет смысл думать о теории в пятимерных терминах. Тем не менее, даже если пятимерная теория проще для работы, дуальность все равно заставляет меня интересоваться тем, что же в действительности значит слово «измерения». Мы знаем, что число измерений должно быть числом величин, необходимых для того, чтобы задать положение объекта. Но всегда ли мы уверены в том, что мы знаем, какие величины нужно считать?
Еще
Т-дуальность применима в теории струн со свернутыми измерениями, потому что в пространстве-времени, компактифицированном в окружность, есть два разных типа замкнутых струн, и эти два типа взаимозаменяются, когда пространство с малым свернутым измерением заменяется на пространство с большим свернутым измерением. Первый тип замкнутых струн осциллирует, когда он движется в свернутом измерении подобно калуца-клейновским частицам, которые мы рассматривали в гл. 18. Другой тип наматывается на свернутое измерение. Он может сделать это раз, два, или любое число раз. И операции Т-дуальности, которые заменяют малое свернутое измерение на большое, взаимозаменяют эти два типа струн.
В действительности Т-дуальность была первым указанием на то, что браны должны существовать: без них в дуальной теории не было бы аналога открытых струн. Но если T-дуальность применима, и крошечное свернутое измерение дает те же физические следствия, что и огромное свернутое измерение, это могло бы означать, что, опять же, наше понятие «измерения» неадекватно.
Это так потому, что если вы захотите сделать радиус одного свернутого измерения бесконечно большим, Т-дуальное свернутое измерение будет окружностью нулевого размера — т. е. окружности вообще не будет. То есть бесконечное измерение в одной теории T-дуально теории, в которой на одно измерение меньше (поскольку окружность нулевого размера не считается измерением). Так T-дуальность тоже показывает, что два внешне разных пространства могут казаться имеющими разное число больших протяженных измерений и тем не менее приводить к тождественным физическим предсказаниям. Еще раз повторю, что понятие измерения неоднозначно.
T-дуальность применима, когда измерение свернуто в окружность. Но еще более необычная симметрия, чем T-дуальность, есть зеркальная симметрия, которая иногда используется в теории струн, если шесть измерений свернуты в многообразие Калаби — Яу. Зеркальная симметрия говорит, что шесть измерений могут быть свернуты в два очень разных многообразия Калаби — Яу, и тем не менее получающаяся четырехмерная теория на больших расстояниях может быть одной и той же. Многообразие, получающееся в результате применения этой зеркальной симметрии к некоторому многообразию Калаби — Яу, может выглядеть совершенно иначе: оно может иметь другую форму, размер, скрученность или даже некоторое число дырок [182] . Тем не менее, если для некоторого многообразия Калаби — Яу существует зеркальное, то физическая теория, где шесть измерений свернуты в одно из двух многообразий, будет одна и та же. Поэтому и с зеркальными многообразиями две явно разных геометрии приводят к тем же самым предсказаниям.
182
Многообразия могут иметь разное число дырок; например, у сферы нет дырок, в то время как у тора — тела типа бублика — есть одна дырка.
Матричная теория, инструмент для изучения теории струн, дает еще более таинственные подсказки про измерения. Поверхностно, матричная теория выглядит как квантово-механическая теория, которая описывает поведение и взаимодействия D0-бран (точечноподобных бран), движущихся в десяти измерениях. Но хотя теория явно не содержит гравитацию, D0-браны действуют как гравитоны. Так что в конце теория получается содержащей гравитационное взаимодействие, хотя гравитон внешне отсутствует.
Кроме того, теория D0-бран напоминает супергравитацию в одиннадцати измерениях, а не в десяти. То есть матричная модель выглядит так, как если бы она содержала супергравитацию в пространстве с размерностью на единицу больше, чем в исходной теории. Эта подсказка (наряду с другими математическими свидетельствами) привела теоретиков-струнников к убеждению, что матричная теория эквивалентна М-теории, которая также содержит одиннадцатимерную супергравитацию.
Одна особенно странная черта матричной теории была замечена Эдвардом Виттеном и состоит в том, что когда D0-браны подходят слишком близко друг к другу, нельзя точно знать, где они находятся. Как сказали Том Бэнкс, Уилли Фишлер, Стив Шенкер и Ленни Сасскинд — создатели матричной теории — «таким образом, для малых расстояний не существует представления конфигурационного пространства и терминах обычного положения» [183] . То есть положение D0-браны больше не является имеющей смысл математической величиной, когда вы пытаетесь определить его слишком точно.
183
Banks Т., Fischler W., Shenker S. Н., and Susskind L. M-theory as a matrix model: a conjecture // Physical Review D. 1997. V.55. P. 5112–28.
Такие странные свойства делают матричную теорию мучительно трудной для изучения, и в настоящее время очень трудно использовать ее для вычислений. Проблема состоит в том, что, подобно другим теориям, содержащим сильно взаимодействующие объекты, никто еще не нашел способа решить многие важнейшие вопросы, которые помогут нам понять, что же в ней действительно происходит. Все же, из-за возникновения дополнительного измерения и исчезновения измерений, когда D0-браны подходят слишком близко друг к другу, матричная теория дает еще один повод думать о том, что же в действительности значат измерения.
Хотя физики математически продемонстрировали эти таинственные эквивалентности между теориями с разным числом измерений, нам явно все еще не хватает полной картины. Знаем ли мы наверняка, что эти дуальности применимы, и если так, то что они говорят нам о природе пространства и времени? Более того, никто не знает, что будет лучшим описанием, когда измерение не слишком велико и не слишком мало (по сравнению с чрезвычайно малым планковским масштабом длины). Возможно, наше понятие пространства-времени просто полностью разваливается, как только мы пытаемся описать что-нибудь столь малое.
Одной из сильнейших причин для веры в то, что наше пространственно-временное описание неадекватно на планковском масштабе длины, является отсутствие даже теоретического метода исследования таких малых расстояний. Мы знаем из квантовой механики, что для исследования таких малых масштабов длины требуется огромная энергия. Но как только вы поместите слишком много энергии в область планковского размера, 10– 33 см, вы получите черную дыру. И тогда у вас нет способа узнать, что же происходит внутри. Вся эта информация заключена внутри горизонта событий черной дыры.