Занимательная физика (книга 1)
Шрифт:
Есть множество игрушек, основанных на этом начале. Игрушечный пароход (Рис. 8.), изобретенный остроумным Томом Титом, движется потому, что пар, вытекая в одну сторону, толкает весь пароход в обратную. Если в прорезь картонной рыбки, положенной на воду (см. рис. 9), капнуть масла, она поплывет в направлении, обратном тому, по которому растекается масляная пленка. Наконец, мы знаем, что самая древняя в мире паровая машина, изобретенная Героном Александрийским еще в III век до Р. X., была устроена по тому же принципу: пар из котла (рис. 10) поступал по трубке в шар, вращающийся на горизонтальной оси; вытекая затем из коленчато-изогнутых трубок, пар толкал эти трубки в обратном направлении, – и шар начинал вращаться. К сожалению, Геронова паровая турбина
Рис. 10. Самая древняя в мире паровая машина (турбина), изобретенная Героном Александрийским в III веке до Р. X.
Как движется каракатица?
Вероятно, вам странно будет слышать, что существует множество живых существ, для которых мнимое «вытаскивание самого себя за волосы» является весьма обычным способом перемещения.
Каракатица и вообще большинство головоногих моллюсков движутся в воде таким образом: они набирают воду в жаберную полость через боковую щель и особую воронку впереди тела и затем энергично выбрасывают струю воды через упомянутую воронку; при этом они получают обратный толчок, достаточный для того, чтобы довольно быстро плавать задней стороной тела вперед. Каракатица может, впрочем, направить трубку воронки вбок или назад и, энергично выдавливая из нее воду, двигаться в любом направлении.
На том же основано и движение медузы: сокращением мускулов она выталкивает из-под своего колоколообразного тела воду, получая толчок в обратном направлении. Сходным приемом пользуются при движении сальпы, личинки стрекоз и многие другие водные животные. А мы еще сомневались, можно ли так двигаться!
Рис. 11. Как передвигается в воде каракатица. С силою выбрасывая из своего тела набранную воду, животное получает толчок, который и относит его назад.
К звездам на ракете
Что может быть заманчивее, чем покинуть наш земной шар и путешествовать по необъятной вселенной, перелетать с планеты на планету, со звезды на звезду? Сколько фантастических романов написано на эту тему! Кто только не увлекал нас в воображаемое путешествие по небесным светилам! Вольтер в «Микромегасе», Жюль Верн в «Путешествии на Луну» и «Гектор Сервадак», Уэллс в «Первых людях на Луне» и множество их подражателей совершали воображаемые путешествия на небесные светила, – конечно, в мечтах. В действительности же мы – увы! – остаемся пленниками земного шара [11] .
11
Книга была издана в 1913 году. – Прим. изд.
Неужели же нет возможности осуществить эту давнишнюю мечту человечества? Неужели все остроумные проекты, с такой заманчивой правдоподобностью изображенные в романах, на самом деле неисполнимы? В дальнейшем мы еще будем беседовать о фантастических проектах межпланетных путешествий; теперь же познакомимся с единственным серьезным проектом подобных путешествий, предложенным русским ученым К. Э. Циолковским.
Можно ли долететь до Луны на аэроплане? Конечно, нет: аэропланы и дирижабли движутся только потому, что опираются о воздух, отталкиваются от него, – а между Землей и Луной воздуха нет. В межпланетном пространстве вообще нет никакой материальной среды, на которую мог бы опереться «межпланетный дирижабль». Значит, надо придумать такой снаряд, который мог бы двигаться, ни
Мы уже знакомы с подобным снарядом в виде игрушки – это ракета. Так отчего бы не устроить огромную ракету, с особым помещением для людей, съестных продуктов, запасов воздуха и всем прочим? Вообразите, что люди в этой ракете везут с собой большой запас взрывчатых веществ и, подобно каракатице, могут направлять истечение газов в любою сторону. Вы получите настоящий управляемый небесный корабль, на котором можно плыть в беспредельном океане мирового пространства, полететь на Луну, на планеты, к звездам… Пассажиры могут посредством ряда отдельных мелких взрывов увеличивать скорость этого межпланетного дирижабля с необходимой постепенностью, чтобы возрастание скорости было безвредно для них. При желании спуститься на какую-нибудь планету они могут постепенно уменьшить скорость снаряда и тем ослабить силу падения. Наконец, пассажиры могут таким же путем возвратиться и обратно на Землю. Для всего этого надо только захватить с собой достаточный запас взрывчатых веществ.
«Зачем же дело стало? – спросите вы. – Почему же никто не сооружает такой гигантской ракеты и не отправляется исследовать глубины межзвездных пространств?»
Остановка в том, что мы пока не имеем достаточно сильного взрывчатого вещества. Чтобы сообщить исполинской ракете скорость, потребную для преодоления силы тяжести, нужно взрывчатое вещество силою в 10–15 раз больше, чем у пироксилина [12] . Такого вещества мы еще не знаем; не имеем мы и достаточно крепких материалов для «небесной ракеты».
12
Пироксилин (от греч. pyr – огонь и xylon – дерево) – сильное взрывчатое вещество, получаемое в результате обработки древесной клетчатки или отбросов бумагопрядения с помощью смеси азотной и серной кислот, употребляется при подрывных работах и при изготовлении бездымного пороха. – Прим. изд.
Но то, что невозможно сегодня, может осуществиться завтра. Человечество уже было однажды в подобном положении: когда найден был принцип летания по способу парения, для сооружения аэроплана не хватало лишь достаточно сильного двигателя и достаточно прочных материалов. Прошло 15 лет, – и что же? Аэропланы высоко реют в воздухе, перелетая через горы и моря; мы присутствовали уже и при воздушной войне… Так отчего не допустить, что когда-нибудь люди полетят к звездам в огромном ракетообразном снаряде?
Глава вторая
Силы. Работа. Трение
Задача о лебеде, раке и щуке
История о том, как «лебедь, рак да щука везти с поклажей воз взялись» – известна, конечно, всем. Но пробовали ли вы проверять этот рассказ на основании законов механики? Результат проверки получается, сверх ожидания, вовсе не похожий на вывод баснописца.
Будем рассуждать так, словно перед нами обыкновенная задача на сложение нескольких сил, действующих под углом одна к другой. Направление сил определено в басне:
…Лебедь рвется в облака,Рак пятится назад, а щука тянет в воду.Это значит, что одна сила, тяга лебедя (А), направлена вверх; другая, тяга щуки (В) – вбок; третья, тяга рака (С) – назад. Не забудем, что существует еще четвертая сила, вес воза, которая направлена отвесно вниз. Крылов утверждает, что «воз и ныне там», – другими словами, что равнодействующая всех четырех сил в данном случае равна нулю.