Занимательно об астрономии
Шрифт:
При всей своей величине Солнце — средняя, заурядная звезда, не более. Таких, как оно, пруд пруди. Именно потому им легко пользоваться в качестве мерки при описании других звезд. Мы с вами так и поступим. Будем обозначать звездные массы в массах Солнца, а диаметры звезд — в солнечных диаметрах. То есть все звездные параметры переведем на язык Солнца, считая, что уж наше-то светило мы знаем вдоль и поперек. Прием традиционен. Хотя за последнее время вселенная и преподносит нам такие сюрпризы, что Солнце как эталон начинает терять свое значение. Но об этом дальше. А пока познакомимся с некоторыми представителями звездного населения вселенной. Начнем с самой известной
2. Самая известная
Это, конечно, Полярная — крайняя звезда в хвосте Малой Медведицы. Если наблюдать за этим созвездием всю ночь до утра, можно заметить, как оно, подобно часовой стрелке, поворачивается вокруг Северного полюса мира, расположенного рядом с Полярной. 2700 лет назад эта невидимая точка неба имела другой ориентир. Возле нее находилась Альфа Дракона. А те земные астрономы, которые будут жить через 12 тысячелетий после нас, бродягу — Полюс мира — обнаружат недалеко от яркой Веги.
Но предмет нашего исследования — Полярная.
А знаете, кто первым обратил внимание на относительную неподвижность Полярной? Финикияне-мореплаватели. И тотчас извлекли практическую пользу из этого наблюдения. Стали пользоваться ею как путеводной, направляя свои триремы в открытое море. Долгое время неподвижную звезду северного неба называли финикийской звездой или просто финикиянкой.
В 1779 году Вильям Гершель, направив на Полярную свой телескоп, обнаружил у нее спутник — малюсенькую звездочку примерно девятой звездной величины.
Ну-ка, подсчитайте, во сколько раз меньше света дает открытый Гершелем вассал, чем его сюзерен? А между тем этот крохотный спутник поболее Солнца. Хотя следует оговориться: вопрос о том, является ли маленькая звездочка истинным спутником Полярной, до сих пор без ответа. Смущает период обращения ее вокруг главной звезды: по некоторым подсчетам, он равен примерно 7200 земным годам, но поручиться за это трудно, ведь возраст телескопов на Земле меньше четырех столетий.
Свет Полярной — великий путешественник. 472 года находится он в полете, прежде чем достигает Земли. Значит, наблюдая сегодня звезду в телескоп, мы на самом деле видим ее такой, какой она была примерно во времена Колумба. Но что для звезд человеческие сроки…
Что же представляет собой Полярная? Сверхгигант, принадлежащий к спектральному классу F7, — а значит, она несколько погорячее Солнца. Температура на поверхности порядка 7 тысяч градусов, цвет излучения — желтый. Рядом с Солнцем Полярную лучше не ставить. Ее диаметр в 120 раз превосходит солнечный. Правда, плотность ее при этом в 3 тысячи раз меньше плотности воды. Это означает, что внешние слои звезды состоят из почти неуловимого газа. Даже не газа, а скорее «неощутимого эфира».
Мало того, Полярная звезда переменна. Огромное раскаленное тело непрерывно пульсирует. Ровно четверо земных суток длится таинственный цикл в недрах ее, заставляющий звезду то сжиматься, то раздуваться, меняя температуру, спектр и блеск. От 1 m,96 абсолютной звездной величины блеск ее меняется до 2 m,05 с точностью хронометра. А вот почему — неизвестно.
Но чтобы любое разнообразие было особенно наглядным, принято приводить в качестве примеров крайности.
Не будем и мы отступать от этого правила.
3. Самая большая из известных
Звезда VV Цефея по объему в 20 миллионов раз больше Солнца! Но и это не предел. Желтый сверхгигант из двойной системы Эпсилона Возничего — «Эпсилон В» — по объему в 17 700 миллионов раз превосходит наше светило! То есть если посчитать Солнце блохой, то «Эпсилон В» — два слона!!! Но только по размерам. Стоит поставить звезды на весы, как выяснится удивительнейшее правило. Что бы уравновесить сверхгиганта, понадобилось бы всего… 25 Солнц. Разница в массах не так ощутима, как в объемах. Да и вообще найти звезду, в сотни раз превосходящую Солнце по массе, пока не удалось никому. А размеры? Размеры что! Чем больше они, тем разреженнее вещество, составляющее тело звезды. Сверхгиганты состоят из вещества, в миллиарды раз более разреженного, чем воздух, которым мы с вами дышим.
А теперь из одной крайности в другую.
4. Самая маленькая из известных
Звезда Ван-Маанена светит в 5 тысяч раз слабее Солнца. По объему она в 3 миллиона раз меньше его, а по массе? И снова парадокс. Разница не превышает десяти. Наперсток вещества звезды Ван-Маанена весит на Земле… четверть тонны! Но и это не предел.
Самая маленькая из известных звезд — 457 Вольфа. По своим размерам она почти Луна. А по массе — Солнце.
Здесь правило такое: если масса небесного тела меньше сотой доли солнечной, давление в центре его уже не поднимет температуру настолько, чтобы начались термоядерные процессы. Такому небесному телу звездой не быть. Вспомните судьбу Юпитера. Звание «звезды» ко многому обязывает. Может быть, потому так трудно бывает выиграть и конкурс красоты на Земле? Не был ли неудавшимся астрономом человек, предложивший впервые у нас на планете «конкурс звезд»?
5. Главный порядок — спектральная классификация
Звезды невероятно разнообразны. Но нельзя же все их бесконечное множество изучать поштучно. Какая же тогда наука? Наука — это прежде всего общие закономерности. В поисках закономерностей и обратили люди внимание на спектры звезд.
Изучение началось с Солнца. И спектральный анализ далеких светил возник на основе наблюдений солнечного спектра. Это пробовал делать еще Фраунгофер. Но у великого оптика никогда не было достаточно времени на серьезную теоретическую работу. Да и знания его заставляли желать лучшего.
Истинное исследование звездных спектров началось после опубликования работ двух профессоров Гейдельбергского университета — Г. Кирхгофа и Р. Бунзена. Это было замечательное содружество. Кирхгоф — великолепный теоретик, обладавший прекрасной научной интуицией; Бунзен — один из наиболее блестящих экспериментаторов своего времени. Они заложили основы научного спектрального анализа и первыми применили его для строгого исследования атмосферы Солнца.
Спектроскописты различают три вида спектров излучения: непрерывные, представляющие собой радужную полоску всех цветов, затем линейчатые и полосатые спектры, состоящие из ярких цветных линий, или полос, на темном фоне. Кроме того, существуют еще спектры поглощения, представляющие собой картину обратную — темные линии, или полосы, на фоне непрерывного спектра.