Чтение онлайн

на главную

Жанры

Занимательно об энергетике
Шрифт:

В 1967 году, когда многие организации, занимающиеся топливными элементами и работающие на космос, начали свертывать свою деятельность и дух уныния воцарился над этой проблемой, американская фирма «Юнайтед технолоджи корпорейшн», объединившись с консорциумом газовых и электрических компаний (электроэнергия из газа), создала проект «Тарджет» («Цель»). Организаторы проекта, что называется, смотрели в корень. Природный газ становится в энергетике самой перспективной фигурой. Использовать его высокоэффективно, экологически чисто — то была достойная задача.

Проект

«Тарджет» действует более 20 лет. Исследования велись с постепенным наращиванием мощности установок. В 1972—1973 годах было изготовлено более 60 модулей — 12,5 киловатт каждый. Теперь же взят курс на 40-киловаттные устройства. 50 таких станций пройдут испытания в период с 1979 по 1981 год, чтобы к 1982 году можно было выработать окончательные рекомендации по их практическому использованию. Конечная цель работ — создание предпосылок для использования газа в качестве единственного носителя энергии.

«Тарджет» не единственный проект такого рода. В 1971 году была принята другая программа — «РСО» (первые буквы слов «Fuel Cell Generator» — генераторы на топливных элементах).

Если проект «Тарджет» поддерживали в основном газовые компании, то программу РСО финансировали компании электрические. И цели тут покрупнее — построить в начале 80-х годов уже 27-мегаваттную (!) установку на топливных элементах.

В 1976—1977 годах была построена и успешно испытана станция мощностью в 1 мегаватт. А в мае 1980 года в густонаселенном районе Нью-Йорка (Нижний Манхаттан, это место выбрано, чтобы показать преимущества использования топливных элементов: бесшумность, бездымность, «безводность») начато испытание электростанции на топливных элементах мощностью в 4,8 мегаватта. Она дает ток в городскую сеть.

Если эксплуатация этой демонстрационной энергоустановки — пока идет очень дорогостоящий и сложный технический эксперимент! — окажется успешной (планируется, что станция проработает 2000 часов: в октябре 1981 года предполагается выпустить заключительный отчет по данному проекту), то в начале 80-х годов, возможно, будет построена электростанция уже на 27 мегаватт.

Согласно предварительным расчетам такая станция сможет обеспечить электроэнергией жилой массив (или город) с населением в 20 тысяч человек. Все оборудование такой ЭЭС может быть размещено в одноэтажном строении, занимающем порядка двух тысяч квадратных метров земли.

Чтобы ощутить размах дела, полезно вспомнить события не столь далекие: историю развития атомной энергетики. Первая в мире АЭС опытно-промышленного назначения мощностью в 5 мегаватт (какое совпадение: ЭЭС в Нью-Йорке рассчитана примерно на ту же мощность!) была пущена в СССР 27 июня 1954 года. А в 1958 году была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 мегаватт (Мвт) — полная проектная мощность 600 Мвт. Так начиналась эра атомной энергетики. Не стоим ли мы сейчас на пороге энергетики электрохимической?

Третье поколение

Широкая река научно-технического прогресса. Ее стремительные повороты, странные и

порой необъяснимые. Скажем, М. Фарадей (1791 —1867), так много сделавший для развития электрохимии. (Достаточно вспомнить открытые им законы электролиза.) Но он же в 1831 году открыл и принцип электромагнитной индукции. К чему это привело? К созданию электрических генераторов. К забвению электрохимических устройств, которые до этой поры (до 60-х годов XIX века) являлись основным источником электричества. Но сейчас, кажется, ситуация вновь меняется. Восстанавливается (увы, спустя примерно столетие) исходная позиция.

«Загнанные в резервации», «истребленные» для нужд Большой Энергетики, электрохимические устройства в образе топливных элементов собираются теперь дать бой тепловым машинам на их же собственной территории.

Третья американская долговременная программа «Utility» («Польза») поставила своей целью осуществить заветную мечту электрохимиков — поставить на промышленную основу, «холодное» (на топливных элементах) горение угля в кислороде воздуха. И не в виде лабораторных образчиков, дразнящих воображение, но не выдерживающих практической проверки. Где-то в 1990-х годах должна быть построена электростанция мощностью в 635 мегаватт!

Человек редко живет настоящим. Тело — да, но разум всегда устремлен в будущее. Видно, тому серьезные биологические причины: тысячелетняя борьба за существование, шлифующая наш мыслительный аппарат. Столь жизненная необходимость — умение предвидеть! Каков завтрашний день земной энергетики? Тут нет особых разногласий. Уже проглядываются три этапа.

Ближайший — эра нефтепродуктов и природного газа. Их хватит человечеству еще лет на 20—30. Следующий, второй этап — посленефтяной или угольный. Запасы угля обильны: ими можно «кормиться» 1,5— 2 столетия. Третий этап развития энергетики начнется, когда вся ископаемая органика будет исчерпана. Тогда пойдут в ход на полную мощность солнечные, атомные и термоядерные установки.

А электрохимическая энергетика? Привязана ли она к быстро исчезающей органике? Вовсе нет. Если, как утверждают футурологи, грядет эра водородной энергетики, топливным элементам всегда найдется дело, ибо это лучший инструмент для сжигания водорода.

Электрохимическая энергетика только начинается, но ученые уже размышляют об энергоустановках второго и третьего поколений.

Пока идет работа с топливными элементами первого поколения. С фосфорнокислым электролитом, элементами, функционирующими при температуре около 210 градусов Цельсия.

Отдельные электрохимические ячейки устроены так. Концентрированным водным раствором кислоты пропитывается тонкий слой пористого вещества-носителя. Оно заключено между пористыми же угольными электродами, на которые нанесен тонкий слой катализатора •— платины (0,3—0,8 миллиграмма на квадратный сантиметр внешней поверхности электрода). Мощность такого элемента 0,1—0,2 ватта с квадратного сантиметра площади электродов, напряжение — 0,64 вольта. Вот характеристики отдельного электрохимического «бутерброда».

Поделиться:
Популярные книги

Отверженный VIII: Шапка Мономаха

Опсокополос Алексис
8. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VIII: Шапка Мономаха

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Главная роль

Смолин Павел
1. Главная роль
Фантастика:
попаданцы
альтернативная история
4.50
рейтинг книги
Главная роль

(не)Бальмануг.Дочь

Лашина Полина
7. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(не)Бальмануг.Дочь

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Бастард Императора. Том 5

Орлов Андрей Юрьевич
5. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 5

Сам себе властелин 3

Горбов Александр Михайлович
3. Сам себе властелин
Фантастика:
фэнтези
юмористическая фантастика
5.73
рейтинг книги
Сам себе властелин 3

Гром над Академией. Часть 1

Машуков Тимур
2. Гром над миром
Фантастика:
фэнтези
боевая фантастика
5.25
рейтинг книги
Гром над Академией. Часть 1

Мимик нового Мира 15

Северный Лис
14. Мимик!
Фантастика:
боевая фантастика
юмористическая фантастика
постапокалипсис
рпг
фэнтези
5.00
рейтинг книги
Мимик нового Мира 15

Не верь мне

Рам Янка
7. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Не верь мне

Огненный князь 4

Машуков Тимур
4. Багряный восход
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 4

Дыхание Ивента

Мантикор Артемис
7. Покоривший СТЕНУ
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Дыхание Ивента

Законы Рода. Том 3

Flow Ascold
3. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 3

Господин следователь

Шалашов Евгений Васильевич
1. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь