Занимательный космос. Межпланетные путешествия
Шрифт:
Лучевое давление
Здесь также видят помеху для звездоплавания. Звездолет как небесное тело, конечно, карлик; а если так, то не может ли быть его движение нарушено отталкивающим действием солнечных лучей? Не опрокинет ли этот фактор все расчеты астрономов, не спутает ли он так тщательно расчисленные маршруты звездоплавания? [45]
Бояться этого не приходится. Ракета в 5 т массы, подставляющая солнечным лучам поверхность в 50 м2, должна под действием светового давления приобрести ускорение в 0,000004 см/с за секунду. В течение суток скорость звездолета изменится менее чем на 2 мм/с. Это не может ни иметь рокового значения, ни даже служить сколько-нибудь значительной помехой, так как для восполнения разного рода непредвиденных мелких потерь скорости звездолет берет с собой некоторый избыток горючего.
Опасность
Можно ли быть уверенным в том, что ракета, посланная на Луну, действительно достигнет ее, а не направится мимо и не заблудится в мировом пространстве – или, что столь же опасно, попадет на какую-нибудь планету, куда попасть вовсе нежелательно? Луна представляет такую крошечную мишень на небе (она видна под углом всего в полградуса), что промахнуться, направляя на нее ракету, очень легко.
Опасения эти столь же малоосновательны, как и все предыдущие. Прежде всего при отправлении ракеты на Луну приходится иметь дело с небесной мишенью вовсе не столь маленькой, как обычно думают. Луна – мишень особенная: она сама притягивает к себе летящие к ней снаряды. Чтобы ракета очутилась на Луне, достаточно закинуть ее за ту границу, где лунное притяжение сильнее земного. Граница эта представляет собою шаровую поверхность, окружающую Луну на расстоянии примерно 40 000 км от ее центра. Значит, мишенью является не шар Луны, диаметром 3500 км, а упомянутая сфера, диаметром 80 000 км. Мишень эта усматривается с Земли под углом в 111/2° – в 23 раза большим, чем лунный диск. Если «стрельба в Луну» равносильна стрельбе в круг диаметром 1 м с расстояния 115 м, то обстрел пограничной сферы соответствует стрельбе в тот же метровый круг с расстояния всего 5 м. Промах здесь маловероятен.
Что касается блуждания в мировом пространстве, то следует иметь в виду, что, покинув атмосферу, ракета оказывается в среде, свободной от трения, и уподобляется небесному телу. Известна точность, с какой астрономы предсказывают затмения и другие события на небе. Движение ракеты может быть предвычислено с такою же астрономической точностью, исключающей всякие уклонения. Не предусмотренные же последствия случайной ошибки (которая может быть лишь очень незначительна под пером опытного вычислителя) могут быть своевременно исправлены пилотом звездолета, располагающим достаточным избытком горючего.
Учитывать притяжение лунной ракеты планетами нет никакой надобности: оно исчезающе мало вследствие крайней отдаленности планет от Земли. Ничтожная масса ракеты не ухудшает положения: величина перемещения зависит лишь от массы притягивающего тела и нисколько не зависит от массы тела притягиваемого .
Притяжение солнца
Не будет ли ракетный корабль, направленный на Луну, притянут Солнцем? Люди, высказывающие это опасение, были бы еще более уверены в его основательности, если бы знали, что ракетный корабль, направляющийся с Земли на Луну, притягивается Солнцем в полтораста с лишком раз сильнее, чем Луною. Действительно, Солнце дальше от Земли, нежели Луна, круглым счетом в 400 раз, и значит, при равной массе должно было бы притягивать в 160 000 раз слабее; но зато масса Солнца превышает лунную в 27 000 000 раз; следовательно, сила притяжения ракеты Солнцем должна быть больше, нежели сила лунного притяжения, в 27 000 000/160 000, т. е. в 165 раз. При таких условиях, естественно, возникает опасение, что ракета скорее очутится на Солнце, нежели на Луне.
Вспомним, однако, что Солнце почти с одинаковою силою притягивает и ракету, и Землю, и Луну, сообщая каждому телу равные ускорения: оно перемещает всю систему из трех тел , почти не влияя на их взаимное расположение. Поэтому ракета, направленная па Луну, должна лететь на нее так, будто притяжения Солнца не существует.
Высадка на луне
О том, как можно безопасно снизиться на Луну, не разбившись о ее твердую поверхность, мы уже беседовали раньше (стр. 140). Но как смогут звездоплаватели покинуть свой ракетный корабль, если на Луне нет воздуха? Путешественников ждет здесь, казалось бы, неминуемая гибель…
Наши эпроновцы [46] , однако, отлично работают как раз в такой среде, где человеку невозможно дышать. Они опускаются под воду в особых костюмах – скафандрах, куда им подается нужный для дыхания воздух. Лунные путешественники ступят на почву нашего негостеприимного спутника также в особых костюмах, имея запас кислорода в баллоне у себя за спиной или на груди. Опасаться того, что подобный костюм будет разорван изнутри давлением распирающего его воздуха при полном отсутствии напора снаружи, – нет оснований: костюму нетрудно придать прочность, достаточную, чтобы противостоять давлению в одну атмосферу. Отпадает и другое опасение, высказанное недавно одним ленинградским физиком, – что невозможно сконструировать скафандр, который, будучи раздуваем изнутри, позволял бы путешественнику свободно перемещать руки и ноги. Сомнение это опровергнуто самой жизнью: скафандр для полетов в разреженных слоях атмосферы, изготовленный и испытанный американским летчиком Постом во время его стратосферного подъема в открытой кабине аэроплана (декабрь 1934 г.), ничем существенным не отличается от костюма для будущей экскурсии на Луну [47] .
Само собою разумеется, что выход из ракетного корабля на лунную поверхность должен быть непродолжителен – примерно таков же, как пребывание водолаза на дне моря.
В связи с этим можно поставить вопрос о том, в каком месте лунной поверхности следует производить высадки. Дело в том, что температура лунной почвы не всюду благоприятна для пребывания на ней человека. В том месте Луны, где в данный момент полдень или послеполуденные часы, температура почвы достигает 100 °C и больше; на ночной же половине нашего спутника господствует страшный мороз в 200 °C и ниже. Будущему лунному путешественнику придется, очевидно, избирать для высадки ту зону лунного шара, где в момент снижения утро и почва успела уже нагреться солнечными лучами, однако еще не накалилась. К этому надо прибавить, что так как лунные сутки длятся целый земной месяц, то утро на Луне продолжается несколько земных суток. Зона, пригодная для высадки, довольно широка, особенно близ лунного экватора, и значит, время пребывания на Луне может быть достаточно продолжительно.
Звездоплавание и теория относительности
В числе опасений, высказываемых насчет межпланетных путешествий, есть и такие, которые черпают свои доводы из теории относительности. Один из рецензентов этой книги высказал мне на страницах авиационного журнала упрек в том, что я «ничего не сказал об относительности понятия одновременности для астронавта, летящего в мировом пространстве с космической скоростью и имеющего собственное поле тяготения».
«Сколько требуется «фактического» времени для полета на какую-нибудь планету? – пишет рецензент. – С нашей, земной, точки зрения это подсчитать нетрудно, но астронавт, вылетевший в космос с этими расчетами и земными часами, окажется жертвой теории относительности и будет проклинать «астрономическую» точность расписания полета, которая не сойдется с его собственным, так сказать, «внутриракетным» временем».
«Далее возникает второй тяжелый вопрос: куда лететь? Путешественник «без масштаба и часов» не знает ни собственной скорости, ни своего положения в пространстве. Единственным якорем спасения является метод непосредственной визуальной проверки, но здесь, кажется, имеет силу поговорка «не верь своим глазам», так как условия работы на ракете (не говоря уже об искажениях согласно теории Эйнштейна), конечно, не те, которые имеет астроном (подверженный обыденному ускорению 9,8 м/с2) в своей обсерватории».
«…Мы считаем, что на всем этом нужно было обязательно остановиться».
Приходится остановиться, раз подобные соображения высказываются даже на страницах специального журнала. Если бы рецензент произвел необходимые выкладки, он, впрочем, сам убедился бы, что при тех скоростях звездолета, о которых говорится в моей книге (несколько десятков километров в секунду), следствия теории Эйнштейна могут сказаться только за 7-м десятичным знаком . Другими словами, они едва уловимы для точнейших приборов, и опасаться каких-либо неувязок на этой почве нет оснований.
В самом деле, зависимость между продолжительностью какого-либо явления на Земле и продолжительностью того же процесса для наблюдателя в звездолете, который движется относительно Земли со скоростью, например, 50 км/ с, такова: