Чтение онлайн

на главную - закладки

Жанры

Занимательный космос. Межпланетные путешествия
Шрифт:

5. Внеземная станция

Для относящихся сюда расчетов воспользуемся рис. 54. Круг радиуса г пусть изображает земной шар, а эллипс – тот путь, по которому звездолет из точки А земной поверхности (экватора) долетает до круговой орбиты искусственного спутника.

Прежде всего вычислим, каков должен быть радиус круговой орбиты (не изображенной на чертеже) этого спутника, чтобы время его обращения равнялось земным суткам. Применим третий закон Кеплера, зная, что Луна обходит Землю в 27,3 суток на расстоянии 60,3 земных радиусов от центра Земли:

откуда

Итак,

внеземная станция должна находиться в расстоянии 6,66 земного радиуса от центра Земли, чтобы период обращения равнялся 24 часам.

Скорость, которую нужно сообщить на Земле звездолету, чтобы он достиг орбиты такого искусственного спутника, есть скорость в точке А эллипса (рис. 59). Вычислим ее по формуле (8):

Здесь vK – скорость свободного кругового обращения небесного тела около центра Земли на расстоянии одного земного радиуса, т. е. 7,92 км/с. Следовательно, искомая скорость v Aотлета

vA = 7,92 × 1,32 = 10,5 км/с [50] .

С какой скоростью звездолет достигнет орбиты искусственного спутника? Другими словами: какова скорость в точке В эллипса, противолежащей точке А? Находим ее, пользуясь вторым законом Кеплера; так как площади, описываемые радиусами-векторами в одну секунду, равны, то

10,5 × r = × 6,66 г,

откуда

Сравним ее со скоростью движения внеземной станции по своей круговой орбите; последняя скорость, очевидно, в 6,66 раз больше скорости движения точек земного экватора (0,465 км):

0,465 × 6,66 = 3,1 км/с.

Значит, звездолету понадобится еще дополнительная скорость в 3,1–1,6 = 1,5 км/с, чтобы пристать к внеземной станции.

Далее, скорость, с какою звездолет должен покинуть внеземную станцию для достижения, например, орбиты

Луны, вычислимпо формуле (8), вообразив соответствующий эллипс, охватывающий орбиту станции и касающийся изнутри орбиты Луны:

Так как скорость станции (vc) равна 3,1 км/с, то искомая скорость равна 1,34 × 3,1=4,1 км/с.

Это всего на 300 м меньше той скорости, какая нужна здесь для полного освобождения от земного притяжения

Если принять во внимание, что сама станция-спутник обладает скоростью в том же направлении, то для достижения Луны с внеземной станции понадобится лишь дополнительная скорость в 4,1–3,1 = 1 км/с.

Соответствующее отношение

 масс заряженной и незаряженной ракет, при скорости вытекания газа 4000 м, равно

Масса горючего должна составлять менее 1/2 массы ракеты после взрывания. Даже если мы желаем, чтобы звездолет мог возвратиться на внеземную станцию, т. е. чтобы он сохранил запас горючего, достаточный для торможения (0,28 окончательной массы), мы должны снабдить его первоначально запасом горючего, составляющим только 0,4 веса всей заряженной ракеты. Отсюда очевидна огромная выгода создания внеземной станции в смысле облегчения остальных задач звездоплавания.

6. Давление внутри пушечного снаряда

Нам придется пользоваться лишь двумя формулами равноускоренного движения, именно:

1) Скорость V в

конце t-й секунды равна at, где а – ускорение:

V = at.

2) Пространство S, пройденное в течение t секунд, определяется формулой:

По этим двум формулам легко определить (разумеется, только приблизительно) ускорение снаряда, когда он скользил в канале исполинской Жюль-Верновой пушки.

Нам известна из романа длина пушки – 210 м: это есть пройденный путь» S\'. Романист указывает и скорость снаряда у выхода из орудия 16 000 м/с. Данные эти позволяют нам определить прежде всего величину t — продолжительность движения снаряда в канале орудия (рассматривая это движение как равномерно-ускоренное). В самом деле:

откуда

Итак, оказывается, что снаряд скользил внутри пушки всего 40-ю долю секунды.

Подставив t =1/40 – в формулу v = at, имеем

16 000 =a/40 —, откуда а = 640 000 м/с2.

Значит, ускорение снаряда при движении в канале равно 640 000 м/с за секунду, т. е. в 64 000 раз больше ускорения силы земной тяжести.

Какой же длины должна быть пушка, чтобы ускорение это было всего в 20 раз больше ускорения тяжести (т. е. равнялось 200 м/с2)?

Это – задача, обратная той, которую мы только что решили. Данные: а = 200 м/с2; v = 11 000 м/с (при отсутствии сопротивления атмосферы такая скорость достаточна).

Из формулы V = at имеем: 11 000 = 200 t, откуда / = 55 секундам.

Из формулы

получаем, что длина пушки должна равняться

м, т. е.

круглым счетом около 300 км.

7. Невесомость свободно падающих тел

Положение, что свободно падающее или брошенное вверх тело ничего не весит, представляется многим настолько необычным и неожиданным, что его готовы принять за физический софизм (вывод правдоподобный, но ложный). Уместно будет поэтому указать на несколько опытов, могущих подтвердить правильность этого утверждения.

Первый опыт подобного рода, насколько мне известно, выполнен был знаменитым Лейбницем. Он привешивал к чашке весов довольно длинную, наполненную водой трубку; на поверхность воды помещал металлический шарик, пустой внутри и закрытый. Устанавливал равновесие, затем открывал отверстие плавающего шарика, шарик наполнялся водой и падал вниз. Во время движения шарика соответствующая сторона весов становилась легче, чашка с разновесками перетягивала (Фишер. «История физики»). Целый ряд опытов подобного рода был выполнен около 1892–1893 гг. известным физиком проф. H.A. Любимовым. Из этих остроумных опытов, странным образом преданных забвению [51] , укажем следующие:

1. Маятник с твердым стержнем, привешенный к вертикальной доске, отводится в сторону и удерживается в этом положении штифтом. Когда доске с этим маятникам дают свободно падать, вынув штифт, удерживающий маятник, то последний остается в отклоненном положении, не обнаруживая стремления раскачиваться [52] .

2. К такой же доске прикрепляют стеклянную трубку в наклонном положении: вверху трубки кладут на ее скошенный край тяжелый шарик, удерживаемый штифтом. В момент падения доски штифт удаляют, но шарик остается вверху трубки, не скатываясь внутрь ее.

Поделиться:
Популярные книги

Студиозус 2

Шмаков Алексей Семенович
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус 2

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7

Афганский рубеж 2

Дорин Михаил
2. Рубеж
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Афганский рубеж 2

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Херсон Византийский

Чернобровкин Александр Васильевич
1. Вечный капитан
Приключения:
морские приключения
7.74
рейтинг книги
Херсон Византийский

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Барон играет по своим правилам

Ренгач Евгений
5. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Барон играет по своим правилам

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Санек

Седой Василий
1. Санек
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Санек

Тринадцатый III

NikL
3. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый III

Жена со скидкой, или Случайный брак

Ардова Алиса
Любовные романы:
любовно-фантастические романы
8.15
рейтинг книги
Жена со скидкой, или Случайный брак

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых