Чтение онлайн

на главную

Жанры

Здравый смысл врет. Почему не надо слушать свой внутренний голос
Шрифт:

Со временем выяснилось, что точно так же обстоят дела и с другими типами событий, которые, как утверждается, прогнозируют рынки предсказаний, — от кассовых сборов художественных фильмов в дни премьеры до результатов президентских выборов. Они происходят без каких-либо правил или условий, делающих спорт конкурентным и, следовательно, непредсказуемым. Существует уйма релевантной информации, использование которой позволило бы рынкам предсказаний добиться результатов, во много раз превосходящих данные простой модели или опроса мнений относительно несведущих респондентов. И тем не менее, когда мы сравнили Hollywood Stock Exchange — один из наиболее популярных рынков предсказаний, знаменитый своими точными прогнозами{178}, — с простой статистической моделью, предсказания первого оказались лишь немногим вернее{179}. В отдельном исследовании результатов пяти президентских выборов

в Соединенных Штатах в период с 1988 по 2004 год{180} политологи Роберт Эриксон и Кристофер Лизен обнаружили, что простая статистическая коррекция обыкновенных опросов общественного мнения по эффективности превосходила даже хваленый Iowa Election Market .

Не доверяй никому, особенно себе

Что же происходит? Мы не совсем уверены, но подозреваем: удивительно схожие результаты применения разных методов представляют собой обратную сторону головоломки с прогнозированием из предыдущей главы. С одной стороны, когда дело доходит до сложных систем — включают они спортивные соревнования, выборы или кино-аудиторию, — существуют строгие границы того, насколько точно мы можем предсказать будущие события. С другой, кажется, что даже относительно простые методы позволяют достаточно близко подобраться к границе возможного. По аналогии, если вам дали игральную кость со смещенным центром тяжести, за несколько дюжин бросков вы догадаетесь, какой стороной она падает чаще всего, — после чего можете смело на это спорить. В остальных случаях даже наиболее совершенные методы (например, изучение кости под микроскопом для выявления всех крошечных трещинок и неровностей на ее поверхности или построение сложной компьютерной симуляции) улучшить прогноз не очень-то помогут.

То же, как мы обнаружили, касается и футбольных матчей: одного-единственного фрагмента информации — принимающая команда выигрывает в 58 % случаев — достаточно, чтобы повысить точность прогнозирования результата по сравнению со случайной догадкой. Существенно помогает и второе простое соображение: команда с лучшей статистикой побед и поражений должна иметь небольшое преимущество. Все же прочие дополнительные данные — как себя вел защитник в предыдущем матче, травмы, проблемы с подружкой у фулбэка — в лучшем случае улучшат прогноз на йоту. Почему? Потому что в сложных системах существует некий предел в предсказании результатов, и первые два фрагмента информации — это фактически все, что нужно для его достижения. Прогнозы в сложных системах, другими словами, подчиняются закону убывающей отдачи.

Разумеется, существуют обстоятельства, при которых важны даже очень незначительные улучшения в точности прогноза. Например, в сфере онлайн-рекламы или торговли акциями с высокой периодичностью можно выдавать миллионы и даже миллиарды прогнозов каждый день — и ставкой будут крупные суммы денег. В этих случаях усилия и затраты, связанные с использованием наиболее совершенных методов, позволяющих учитывать даже самые незаметные тенденции, скорее всего, оправданы. Во всех же других сферах бизнеса (от съемки фильмов до издания книг и разработки новых технологий), где в год делаются несколько дюжин — максимум сотен — прогнозов и где они обычно являются лишь одним из многочисленных аспектов процесса принятия решения, добиться той же степени точности удается с помощью относительно простых методов.

Исключение здесь, которым пользоваться не следует, — руководствоваться мнением одного-единственного человека. Особенно своим собственным. Дело в том, что мы отлично вычленяем факторы, релевантные для данной конкретной проблемы, но совершенно не умеем оценивать их важность друг относительно друга. Например, прогнозируя кассовые сборы в дни премьеры фильма, вы можете счесть крайне релевантными такие переменные, как общий и маркетинговый бюджеты, количество экранов, на которых этот фильм будет показан, а также предварительные рейтинги критиков, — и будете правы{181}. Но какой вес будет иметь плохая рецензия по сравнению с дополнительными 10 миллионами долларов маркетингового бюджета? Неясно. Неясна и роль интернет — и печатной рекламы по сравнению с мнением друзей.

Думаете, в таких типах суждений должны быть хороши эксперты? Как показал в своем эксперименте Тетлок, количественные прогнозы они делали не лучше неспециалистов — а то и хуже{182}. Основная проблема с опорой на экспертов, однако, состоит не в том, что они заметно хуже не-экспертов, а в том, что, поскольку они специалисты, мы склонны консультироваться только с одним из них за раз{183}. Гораздо разумнее узнать многие отдельные мнения — экспертов или не-экспертов — и вычислить среднее{184}. Грубо говоря, это и позволяют делать рынки предсказаний — равно как и опросы общественного мнения. При всех своих «прибамбасах» первые дают прогнозы чуть точнее вторых, но разница между ними гораздо менее существенна, чем польза от простого усреднения множества мнений. И наоборот, на основе статистических данных можно непосредственно оценить относительную важность различных предикторов — что и делает статистическая модель. Искусная, конечно, работает чуть лучше простой, но различие, опять-таки, незначительно{185}. В конце концов, как модели, так и толпа выполняют, по сути, одно и то же. Во-первых, для выявления релевантных прогнозу факторов они опираются на некую версию человеческого суждения, а во-вторых, оценивают и взвешивают относительную важность каждого из этих факторов. Как сказал однажды психолог Робин Дауэс, «весь фокус в том, чтобы знать, на какие переменные смотреть, и уметь их складывать»{186}.

Вместо того чтобы выискивать некий идеальный метод, гораздо целесообразнее просто определить, какие предсказания могут быть сделаны с минимальной ошибкой, а какие нет. При прочих равных, например, чем больше времени отделяет прогноз результата от самого события, тем большей окажется неточность. Все просто: какие методы ни используй, спрогнозировать потенциальный кассовый сбор фильма на стадии одобрения проекта гораздо труднее, чем за неделю или две до его премьеры. Кроме того, одни вычисления даются легче других, и с этим ничего не поделаешь. Как быть? Можно использовать любой из нескольких методов — или даже все вместе, как сделали это мы в исследовании рынков предсказаний, — и следить за их эффективностью в течение некоторого времени. Как я упоминал в начале предыдущей главы, отслеживание прогнозов не приходит само собой: мы делаем множество оных, но редко проверяем, насколько часто они оказываются верными. А ведь это — самое главное! Лишь установив степень точности, характеризующей те или иные предсказания, можно определить, какое значение следует им придавать{187}.

Когда будущее не такое, как прошлое

Как ни старайся, основное ограничение всех без исключения методов прогнозирования заключается в следующем: они надежны, только если в будущем случатся события того же типа, что и в прошлом, и с той же средней частотой{188}. Вне финансовых кризисов кредитные компании могут весьма точно спрогнозировать уровни невыплаты кредитов. Поведение отдельных людей сложно и непредсказуемо, но эти показатели на нынешней неделе, по сути, те же, что и на прошлой, — а значит, модели здесь работают достаточно хорошо. Но, как указывает ряд критиков прогнозирующего моделирования, многие события, интересующие нас больше всего, — начало финансового кризиса, возникновение революционной новой технологии, крах диктатуры или резкое снижение уровня преступности — интересны как раз потому, что они не такие, как в прошлом. В этих ситуациях опора на статистические данные приводит к серьезным проблемам.

Оглядываясь назад: модели, использовавшиеся многими банками для ценоопределения ипотечных деривативов до финансового кризиса 2008 года, — как печально известные ОДО [37] — чересчур сильно опирались на данные из недавнего прошлого, в течение которого цены на жилье только росли. Как результат, и аналитики и трейдеры существенно занизили вероятность общенационального снижения цен на недвижимость и, как следствие, крайне недооценили риск невыплат ипотечных кредитов и конфискации имущества {189} . В ретроспективе кажется, будто рынки предсказаний могли бы лучше предвосхитить кризис, чем все «спецы по анализу», сидящие в банках. Но кто бы участвовал в этих рынках? Да все те же самые люди — наряду с политиками, чиновниками и другими финансовыми специалистами, которые также не смогли предвидеть кризис. А значит, едва ли мудрость толпы что-нибудь изменила бы. Вполне возможно, именно она и втравила нас в эту историю. И если модели, рынки и толпы не могут предсказать таких «черных лебедей», как финансовый кризис, тогда как, черт возьми, их можем предвосхитить мы?

37

Обеспеченное долговое обязательство.

Вторая беда методов, опирающихся на статистические данные, в том, что крупные стратегические решения принимаются не столь уж часто — и это существенно ограничивает применение такого подхода. С точки зрения истории, очень может быть, что большинство войн заканчиваются плохо, а большинство корпоративных слияний себя не оправдывают. Но также верно и то, что некоторые войны необходимы и что некоторые слияния удаются. Как правило, заранее сказать, в чем отличие, практически невозможно. Вот если бы речь шла о миллионах или даже сотнях таких пари, тогда прибегать к статистическим вероятностям, конечно, имело бы смысл. При принятии же решения о том, вступать или не вступать стране в войну или рассматривать ли возможность слияния, имеется только одна попытка. Даже если бы удалось измерить вероятности успеха, разница между 60 и 40 % оказалась бы не столь уж значима.

Поделиться:
Популярные книги

Внешняя Зона

Жгулёв Пётр Николаевич
8. Real-Rpg
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Внешняя Зона

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

Титан империи 7

Артемов Александр Александрович
7. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 7

Инферно

Кретов Владимир Владимирович
2. Легенда
Фантастика:
фэнтези
8.57
рейтинг книги
Инферно

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Фараон

Распопов Дмитрий Викторович
1. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Фараон

Отмороженный 8.0

Гарцевич Евгений Александрович
8. Отмороженный
Фантастика:
постапокалипсис
рпг
аниме
5.00
рейтинг книги
Отмороженный 8.0

Кодекс Охотника. Книга ХХ

Винокуров Юрий
20. Кодекс Охотника
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга ХХ

Элита элит

Злотников Роман Валерьевич
1. Элита элит
Фантастика:
боевая фантастика
8.93
рейтинг книги
Элита элит

Новый Рал 8

Северный Лис
8. Рал!
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Новый Рал 8

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4

Смерть может танцевать 4

Вальтер Макс
4. Безликий
Фантастика:
боевая фантастика
5.85
рейтинг книги
Смерть может танцевать 4

Не ангел хранитель

Рам Янка
Любовные романы:
современные любовные романы
6.60
рейтинг книги
Не ангел хранитель

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник