Зеркальный мир
Шрифт:
При конструировании сложных пересечений важно знать одно свойство узлов, которое мы выведем с помощью эксперимента. Нарисуйте любой транспортный узел. Он может быть запутанным и неправильным. Пометьте только каждое пересечение буквой, разумеется, в каждом случае разной. Теперь ведите карандашом или пальцем по вашему рисунку в направлении, обратном тому, в каком вы рисовали. И всякий раз, проходя пересечение, записывайте соответствующую букву. Чтобы результат (который мы стремимся найти) был нагляднее, записывайте буквы в два ряда: либо слева направо, либо сверху вниз. Важно только, чтобы вы чередовали перекрестки (в зависимости от того, проходит улица над или под другой). Причем не играет роли, каким вы приняли первое
Симметричен ли изображенный здесь морской узел?
Представьте себе, что вы должны спроектировать систему светофоров, регулирующих проезд транспорта. В одном ряду окажутся все светофоры, включенные на зеленый свет, в то время как все светофоры другого ряда должны быть включены на красный.
Фокусники-любители используют знание теории узлов для изящного «эксперимента по чтению мыслей». Вы просите нарисовать подобный узел и обозначить его буквами (не подглядывая), а потом предлагаете объехать препятствие, называя буквы (которые фокусник записывает по известной уже схеме). В каком-нибудь месте два перекрестка «путаются». И фокусник, «читая» мысли, называет встретившиеся буквы. Как легко проверить, перепутавшиеся буквы дважды попадутся в одном ряду.
Всякий перекресток - это задача на 'узлы'. На изображенном здесь перекрестке существует 32 возможности столкновения
В заключение этого раздела еще один вопрос: а что произойдет, если ленту Мёбиуса разрезать вдоль? В случае простой, не перевернутой ленты это ясно: получатся две новые ленты, которые будут вдвое уже первой. Что же случится с лентой Мёбиуса, которую мы предварительно перекрутили, прежде чем склеить ее концы, трудно и представить! Если после одного поворота уже «исчезла» одна сторона, то в этом случае можно ждать чего угодно. Сформулируем вопрос несколько иначе: что случится, если владелец запатентованной ременной передачи разрежет ее вдоль, чтобы из экономии получить две ременные передачи? Опыт подсказывает нам, что двух новых лент не получится. Возникнет замкнутая лента, вдвое большей длины. Она, хотя и перевита, но, как всякая нормальная лента, снова имеет две стороны.
ПЕРЕВОЗКА МОЛОКА И ПОЛ В ВАННОЙ
Перелистните, пожалуйста, несколько страниц назад и еще раз взгляните на пять Платоновых тел. Только эти пять тел (повторим это еще раз) можно построить из одинаковых правильных плоских фигур - граней.
Тетраэдр нам знаком из повседневной жизни. В пакетах-тетраэдрах мы покупаем молочные продукты. Некоторое время назад дискутировался вопрос, почему для этих целей использует-се именно тетраэдр, а не гексаэдр, то есть куб. Ведь куб имеет наименьшую (после шара) поверхность по отношению к объему. Поэтому при такой упаковке для того же объема молока понадобилось бы меньше упаковочного материала, чем при упаковке в тетраэдры. Однако если мы посмотрим на развертки обоих тел, то увидим, что тетраэдры можно складывать из непрерывной движущейся ленты. А вот кубы из простой ленты не получатся. Два квадратика всегда будут торчать, так что обрезков всегда будет оставаться гораздо больше, чем при склеивании пакетов-тетраэдров.
Основной мотив узора многих футбольных мячей состоит из пятиугольника, окруженного пятью шестиугольниками
Этот небольшой пример позволяет проанализировать часто встречающуюся ошибку. Нередко в поисках оптимального решения мы забываем точно определить, что же именно следует оптимизировать. Нижненемецкая поговорка гласит: «Что подходит сове, то негоже соловью». На современный лад это звучит примерно так: «Если создать оптимальные условия для соловьев, каково придется совам!» (И наоборот!)
В нашей задаче об упаковке можно поставить множество вопросов, в зависимости от того, что же именно должно быть оптимальным:
1. Что дает наименьший расход упаковки при том же объеме содержимого? (Шар, куб.)
2. Какое тело легче всего получить из плоского листа путем простого складывания? (Пять Платоновых тел, то есть не шар!)
3. Какое тело при сборке имеет минимальную по длине соединительную полосу, которую можно склеить, сварить или соединить еще каким-то способом? (Тетраэдр.)
4. При выкройке какого тела получается минимум обрезков? (Тетраэдра.)
5. Какие тела можно сложить наиболее плотно, без просветов? (Куб, тетраэдр.)
6. У какого тела наименьшая вероятность «перепутать» грани в том случае, если оно должно лежать определенной стороной кверху (скажем, чтобы была видна маркировка)? (У тетраэдра, у него меньше всего граней.)
Из постановки этих шести вопросов нетрудно понять, как тщательно следует уточнять, что именно мы собираемся оптимизировать.
Если перед нами встанет задача разработать форму упаковки для грузов, предназначенных для пересылки самолетом, определяющими критериями оптимизации будут пункты 1 (маленький упаковочный формат) и 5 (плотная укладка без зазоров), так как при воздушных перевозках каждый грамм стоит дополнительных денег. Но при выборе тары для перевозки молока главную роль играет пункт 3 (наименьшая длина линии склейки) и даже еще более важную - пункт 4 (минимальные отходы). Сюда добавляются еще преимущества пунктов 5 (плотность укладки) и 6 (наименьшая вероятность уложить пакеты не той стороной).
Если объезжать этот 'узел' по стрелке, то б.уквы появятся один раз в 'непрямом' ряду и один раз - в прямом
Перед футурологами уже сегодня встает проблема: будем ли мы в 2000 г. покупать молоко в тетраэдрах или только в порошке, а может быть, нам снова придется возиться с молочными бидонами?
Однако в этой книге нас прежде всего интересуют вопросы, более близкие теме.
Право же, удивительно, что из пятиугольников тоже можно построить многогранник. А почему это невозможно из шестиугольников? Тем более что шестиугольник можно построить из шести треугольников?
Пятиугольники и шестиугольники нельзя уложить на плоскости без зазоров. Эти зазоры закрываются при образовании шара
Очевидно, дело тут не только в самой исходной плоской фигуре (треугольник, квадрат, пятиугольник), но и в том, как эти поверхности, примыкая, соединяются друг с другом. Если шестиугольники выложить на стол, станет ясно, что они покрывают плоскость без зазоров. Это свойственно также треугольникам и квадратам. А вот сложить из шестиугольников, не деформировав их, объемное тело, невозможно. Если все же попытаться с легким нажимом сделать такой многогранник из шестиугольников, его грани выгнутся и форма будет приближаться к шарообразной.