Жангада
Шрифт:
— Боже мой! — вскричал Маноэль. — Мне так хотелось бы вас понять, а я не могу!
— Возьмите в руки документ и прочтите его еще раз, хорошенько всматриваясь в расположение букв.
Маноэль послушался.
— Вы не видите ничего странного в сочетании некоторых букв? — спросил судья.
— Нет, не вижу, — ответил Маноэль, наверно в сотый раз проглядев все строчки документа.
— Ну вот, всмотритесь повнимательнее хотя бы в последний абзац. Там, как вы понимаете, сосредоточен весь смысл документа. По-вашему, в нем нет ничего необычного?
— Нет.
— И, однако, тут есть одна особенность, которая самым бесспорным
— Какая же?
— Взгляните, на этой строчке стоят подряд три буквы Е.
Судья Жаррикес был прав, и наблюдение его заслуживало внимания. Двести первый, двести второй и двести третий знак в этом абзаце были буквой Е. Но вначале судья не заметил этой особенности.
— Что же это доказывает? — спросил Маноэль, не догадываясь, какой надо сделать из этого вывод.
— Это доказывает, молодой человек, что документ построен на числе. Это подтверждает, что каждая буква изменяется в зависимости от цифр этого числа и места, которое они занимают.
— Но почему же?
— Потому что ни в одном языке нет таких слов, где одна буква стояла бы три раза подряд.
Маноэль был поражен этим доводом и не нашелся ничего возразить.
— Если бы я заметил это раньше, — продолжал судья, — я избежал бы лишней траты сил и жестокой мигрени, от которой у меня раскалывается голова!
— Но скажите, сударь, — проговорил Маноэль, чувствуя, что теряет последнюю надежду, но все еще цепляясь за нее, — что вы подразумеваете под шифром?
— Назовем его числом.
— Назовем его как вам угодно.
— Я приведу вам пример, и это будет лучше любого объяснения.
Судья Жаррикес сел за стол, взял лист бумаги, карандаш и сказал:
— Давайте возьмем фразу, все равно какую, ну хотя бы вот эту: «У судьи Жаррикеса проницательный ум». Теперь я напишу ее, оставляя пробелы между словами, вот так:
Написав, судья, считавший, по-видимому, это изречение непреложным, посмотрел Маноэлю в глаза и сказал:
— А теперь я возьму наудачу какое-нибудь число, чтобы сделать из этой фразы криптограмму. Предположим, что число состоит из трех цифр, например 4, 2 и 3. Я подписываю это число 423 под строчкой так, чтобы под каждой буквой стояла цифра, и повторяю число, пока не дойду до конца фразы. Вот что получится:
У СУДЬИ ЖАРРИКЕСА ПРОНИЦАТЕЛЬНЫЙ УМ
4 23423 423423423 42342342342342 34
Затем, молодой человек, возьмем азбуку и будем заменять каждую букву нашей фразы той буквой, которая стоит после нее в алфавитном порядке на месте, указанном цифрой. Например, если под буквой А стоит цифра 3, вы отсчитываете три буквы и заменяете ее буквой Г. Итак, вот что мы получим:
Если буква находится в конце алфавита и к ней нельзя прибавить нужного числа букв, тогда отсчитывают недостающие буквы с начала азбуки. Например, буква Я в алфавите последняя. Если под ней стоит цифра 3, то счет начинают с буквы А, и тогда Я заменяется буквой В.
Доведем до конца начатую криптограмму, построенную на числе 423 — взятом произвольно, не забудьте! — и фраза, которую вы знаете, заменится следующей:
Теперь,
Сначала Маноэль был глубоко подавлен этим строго логичным рассуждением судьи, но затем приободрился и сказал:
— Нет, господин судья! Я все же не откажусь от надежды найти это число.
— Быть может, это еще было бы возможно, — ответил судья Жаррикес, — если бы строчки документа были разделены на слова!
— Почему?
— Вот как я рассуждаю, молодой человек. Я полагаю, есть все основания утверждать, что в последнем абзаце документа подводится итог тому, что было сказано в предыдущих. Поэтому я уверен, что в нем упоминается Жоам Дакоста. Если бы строчки были разделены на слова, то мы могли бы выделить слова, состоящие из семи букв, как и фамилия Дакоста, и, пробуя их одно за другим, может быть, и отыскали бы число, являющееся ключом криптограммы.
— Пожалуйста, объясните мне, как надо действовать, — попросил Маноэль, который увидел в этом предположении последний луч надежды.
— Ничего нет проще, — ответил судья Жаррикес. — Возьмем, например, одно из слов в написанной мною фразе, хотя бы мою фамилию. В криптограмме это бессмысленный ряд букв — КВУФКНЙУ. Напишем эти буквы вертикальным столбцом, а против них поставим буквы моей фамилии. Затем отсчитаем количество букв между ними в алфавитном порядке и найдем нужное число:
Между К и Ж находятся 4 буквы.
Между В — А находятся 2 буквы.
Между У — Р находятся 3 буквы.
Между Ф — Р находятся 4 буквы.
Между К — И находятся 2 буквы.
Между И — К находятся 3 буквы.
Между И — Е находятся 4 буквы.
Между У — С находятся 2 буквы.
Из чего состоит столбик цифр, полученных этим простым сопоставлением? Вы видите сами: из цифр 42342342… то есть из несколько раз повторенного числа 423.
— Да, это так! — подтвердил Маноэль.
— Вы понимаете, что этим способом, идя в алфавитном порядке от условной буквы к настоящей, вместо того чтобы идти от настоящей к условной, как мы делали вначале, я легко нашел число 423, которое сделал ключом своей криптограммы.
— Ну что ж! — воскликнул Маноэль. — Если имя Дакосты упоминается в последнем абзаце, а это несомненно так, тогда, принимая одну за другой каждую букву этих строк за первую из тех семи, что составляют его имя, мы в конце концов найдем…