Жар холодных числ и пафос бесстрастной логики
Шрифт:
Проведал соответствующие преобразования, на этот раз без объяснений (мы предоставляем читателю самостоятельно определить те схемы аксиом нашего исчисления, которым мы пользуемся на каждом шаге).
В полученной на последнем шаге двучленной конъюнкции в каждом члене (представляющем собой дизъюнкцию пропозициональных переменных или их отрицаний) имеется 5 обязательно какая-то переменная и ее отрицание. Следовательно, оба члена конъюнктивной формы тождественно-истинны и, значит, тождественно-истинна и она сама. Итак, рассуждение первого химика
Обратим теперь внимание на то, что в обеих рассмотренных интерпретациях фигурировали множества элементов, являющихся областями значений пропозициональных переменных; именно на этих множествах получали определение операции ~, &, V, свойства которых были ранее установлены равенствами 1—17 из пункта IV, и в этих же множествах находились элементы — результаты применений операций (последнее свойство называется замкнутостью множества относительно данных операций). Тем самым эти множества составляют то, что называется булевыми алгебрами. Булева алгебра—это любое множеством объектов, для которых определены одна одночленная (одноместная, унарная) операция (~) и две двучленных (двуместных, бинарных) операции (&, V) причем множество М замкнуто относительно этих операций; в нем имеются объекты, соответствующие константам 0 и 1 рассмотренного нами исчисления (нуль и единица булевой алгебры); одночленная операция, которую мы назвали отрицанием, подчиняется закону снятия двойного отрицания, а двучленные операции, которые мы назвали конъюнкцией и дизъюнкцией, обе коммутативны, ассоциативны, дистрибутивны одна относительно другой, подчиняются законам поглощения и, вместе с отрицанием, законам Де Моргана, а также законам, в которых фигурируют 0 и 1 (законы 14—17) (ср. с. 55)[20]. В первой из наших интерпретаций булевой алгеброй является множество из двух элементов — 0 и 1, во второй — множество истинностных значений (впрочем, можно считать, что булевой алгеброй здесь было множество высказываний[21]. понимаемых, однако, так, что высказывания, имеющие одно и то же истинностное значение, не различаются)[22]; как мы убедимся ниже, имеются и другие интерпретации булевой алгебры.
Формальный аппарат, изложенный в пп. I—IV (пункт V, как говорят, не расширяет его возможностей), можно понимать как теорию абстрактной булевой алгебры — булевой алгебры как любого множества объектов (носителя), взятого вместе с семейством операций. определенных на этом множестве, которое удовлетворяет всем требованиям данного аппарата, причем как теорию в узком смысле: как некоторое исчисление (равенств). Такую теорию следует отличать от теории булевых алгебр в широком смысле, в которой исследуются свойства приведенного формального аппарата (и аналогичных ему построений) и его интерпретации, формализации булевых алгебр средствами тех или иных логических систем, обобщения понятия булевой алгебры и т. д.
В логике исчислением обычно называют систему правил порождения объектов, допускающих осмысление (интерпретацию), и позволяющую выделять среди осмысленных объектов такие, которые в интерпретациях оказываются в каком-либо разумном смысле истинными суждениями. В рассмотренном нами исчислении объекты возникают в два этапа:
на первом с помощью пп. I и II порождаются формулы (и —с помощью п. V —их сокращения),
на втором (п. III) из формул строятся равенства. Далее среди возникших таким образом объектов происходит отбор тех из них, которые в интерпретациях оказываются верными, отбор равенств[23], истолковываемых как суждения о свойствах элементов соответствующей булевой алгебры, выраженные в терминах ~, & и V. Этот отбор задается постулатами (п. IV); он основан на процедуре порождения верных равенств посредстве м правил вывода [b], исходя из равенств, представляющих собой аксиомы (согласно списку схем аксиом [а]).
Проиллюстрируем механизм подобного порождения на приведенном выше (с. 64) примере доказательства равенства
Шаг (1) состоял в следующем. Было взято равенство (A1 -> ~A2) = (~A1 V ~A2), верное по определению (п. V), и к нему применено правило вывода —замена равным [b] следующим образом: в ((A1 -> ~A2) & (A3 -> A1)) ->
(A3 -> ~A2) часть (A1 -> ~A2) была заменена на формулу (~A1 V ~A2), в результате чего получилось верное равенство:
Здесь
Вернемся, однако, к логической интерпретации. Как мы говорили, операциям ~, &, V соответствуют отрицание, конъюнкция и (слабая, неразделительная) дизъюнкция — соединительно-разделительный союз «или». Как мы увидим ниже, при интерпретации яа классах эти операции истолковываются как взятие дополнения к классу, пересечение и объединение двух произвольных классов. В исчислении, которое разработал сам Дж. Буль и которое истолковывалось им прежде всего как теория классов (ср. ниже третью интерпретацию), использовалась не операция объединения классов, а так называемая симметрическая разность (объединение двух классов с исключением их общей части), а в случае интерпретации на высказываниях — строгая дизъюнкция, то есть операция, соответствующая союзу «или» в разделительном смысле (в разговорном языке передаваемом оборотом «или..., или», «либо..., либо»); если обозначить операцию строгой дизъюнкции знаком ^U то запись (а ^U ) означает, что это строго-дизъюнктивное высказывание (форма высказывания) истинно тогда, и только тогда, когда один член дизъюнкции, безразлично какой, истинен, а другой ложен. Если в перечне схем аксиом [а] изложенного нами исчисления заменить знак V всюду, где он встречается, знаком ^U, то некоторые равенства станут неверными (например, «проваливаются» оба закона Де Моргана).
Это означает, что у самого Буля булевой алгебры не было. Она появляется, конечно, не в виде абстрактной алгебраической системы, а в виде содержательных интерпретаций на классах и высказываниях — лишь у Ст. Джевонса (см. выше. гл. 2). Но от Буля ведет свое начало тип алгебраических систем, переменные которых могут пониматься как двоичные переменные и формулы которых принимают только одно из тех же самых двух значений (поэтому эти переменные и формулы сейчас нередко называют булевыми). К системам такого рода принадлежит и булева алгебра. В этом смысле Буль действительно стоит у ее истоков, что и оправдывает ее название[24].
Теоретико-множественная интерпретация (на классах)
Введем в рассмотрение некоторую область предметов — универсальный класс V (ср. гл. 2). Будем рассматривать всевозможные классы (множества), состоящие из предметов универсума V, то есть его подмножества. Введем также пустой класс Л. На подмножествах множества V, включая и сами V и Л, обычным образом определим операции взятия дополнения к произвольному классу Л, пересечения двух произвольных классов A и B и их объединения (см. примечание 15 на с. 47). Истолкуем пропозициональные переменные булевой алгебры как переменные, значениями которых являются классы; операции ~, &, V будем понимать соответственно как ', , и следовательно, формулы ~, ( & ), ( V ) как формулы логики классов ', и , а 1 и 0 — как V и Л. В соответствии с определением V это приведет к истолкованию выражений вида ( -> ) и как совпадающих по смыслу с формулами вида (' ) и ((' ) ( '))- Тогда формулы рассмотренного нами исчисления обратятся в формы классов[25], так как при всякой подстановке каких-то значений вместо всех переменных- данной формулы мы будем получать некий класс. Равенства = , где- и — формы классов, обращается в истинное высказывание, если при данной подстановке значений на места всех переменных, имеющихся в а и , формы а и переходят в точности в один и тот же класс[26]. Если это имеет место при любой подстановке такого рода, равенство считается верным.
Нетрудно проверить, что все 17 схем аксиом [а] при данной интерпретации оказываются верными равенствами. Возьмем, например, равенство 13. При интерпретации оно приобретает вид (а')' = а, что очевидно верно, какой бы класс ни взять в качестве а: дополнение к дополнению к данному классу совпадает с данным классом (это ясно видно из рис. 2, где класс A представлен кругом, универсальный класс — квадратом, в который помещен круг. а дополнение к классу A заштриховано). Ясно также, что пересечение любого класса A с универсальным классом есть класс Л (схема аксиом 14), и тот же результат дает его объединение с пустым классом (схема аксиом 15) и т. д.[27].