Жар холодных числ и пафос бесстрастной логики
Шрифт:
Покажем, как удостоверяется следование заключения из посылок на уже знакомом нам примере силлогистического модуса Celarent. Представим посылку «Ни одно B не есть С» в виде «Если А1 то не-A2» то есть (A1 -> ~А2), что является сокращением для формы (~А1 V ~\А2) здесь А1 и ~A2 суть пропозициональные формы, соответствующие выражениям «Нечто принадлежит классу В» и «Нечто принадлежит классу не-С (то есть дополнению к классу С)» в высказывании «Если нечто принадлежит классу B, то оно принадлежит
Пользование таблицами истинности для определения следования заключения из посылок, однако, весьма громоздко. При четырех пропозициональных переменных таблица будет иметь 16 строк, при пяти — 32 строки и т. д. Поэтому в логике разработаны методы аналитического обоснования следования заключения из посылок — путем преобразования формул. В нашем примере обращение к одному из аналитических методов будет выглядеть так (над знаками равенства проставлены номера шагов в получившейся цепочке равенств; наружные скобки в формулах, подвергающихся преобразованиям, опущены).
Прокомментируем каждый из тринадцати шагов, а затем подвергнем анализу результат преобразования. На шагах (1), (2) и (3) используется определение знака импликации как средства сокращенной записи формул (п. V на с. 57). В результате исследуемое импликативное выражение переходит в формулу нашего исчисления. На шаге (4) применяется первый закон Де Моргана, а на шаге (5) дважды — второй закон Де Моргана. Шаг (6) заключается в снятии двойных отрицаний. Далее, на шаге (7) происходит раскрытие скобок — применяется закон дистрибутивности дизъюнкции относительно конъюнкции. На шаге (8) по закону коммутативности дизъюнкции происходит перестановка членов в формулах ((A1 & А2) V A3) и ((A1 & A2) V ~A1)
На шаге (9) снова, причем дважды, применяется закон дистрибутивности дизъюнкции относительно конъюнкции. Шаг (10) состоит в том, что из четырехчленной конъюнкции на основании законов 17 и 14 исключается тождественно-истинный член (~А1 V A1). На шаге (11) применяется закон коммутативности дизъюнкции, а на шаге (12) происходит раскрытие скобок по закону дистрибутивности дизъюнкции относительно конъюнкции. Обращаем внимание на то, что в наших преобразованиях использовалась ассоциативность операций дизъюнкции и конъюнкции, позволившая в формах, представляющих собой многочленные дизъюнктивные либо конъюнктивные формулы, удалить все скобки (это означает, что скобки мыслятся расставленными любым допустимым, то есть не нарушающим свойства выражения «быть формулой», образом)[18].
Этим же свойством, да еще законом коммутативности, мы пользовались на шаге (13), когда в трех членах конъюнктивной формулы, полученной на предыдущем этапе (они представляют собой дизъюнктивные формулы), расположили буквы в порядке возрастания индексов, сгруппировав вместе буквы и их отрицания. Подчеркнем, что на каждом из тринадцати шагов мы применяли наше «основное» правило вывода — производили замену равного равным, причем иногда по нескольку раз.
Исследуем теперь полученное выражение. Как и предыдущая формула,
В остальных двух дизъюнктивных формулах исследуемого выражения тоже «присутствует» закон исключенного третьего, поэтому каждая из них также тождественно-истинна. Итак, B нашей трехчленной конъюнкции каждый член оказывается тождественно-истинным. Вспомнив табличное задание операции конъюнкции (легко распространяемое на конъюнктивные формулы с произвольным числом членов), мы приходим к заключению, что наша результирующая формула тождественно-истинна. Но, в силу транзитивности отношения равенства, исходная формула равна результирующей, значит, и она тождественно-истинна.
Чтобы у читателя не создалось впечатления, что аналитические методы обязательно приводят к столь пространным выкладкам, мы решим эту же задачу другим способом. Предварительно заметим, что равенство вида
((~а V ) &( V а)) = (~а V ) &( V ) & ( V )) (*)
является верным равенством, каковы бы ни были формы , и этом можно убедиться, производя его табличную проверку; равенство (*) можно вывести и непосредственно из наших постулатов — осуществить это преобразование мы предоставляем читателю).
Возьмем конъюнкцию наших посылок и исключим из нее знаки -> : ((А1 -> ~А2) & (A3 -> А1)) = ((~А1 V ~А2) & (~A3 V A1)). Но в силу (*): ((~A1 V ~A2) & (~А3 V A1)) = ((A1 V ~A2) & (~A3 V A1) & (~A3 V ~A2))
(здесь роль играет формула A1 роль — формула ~A2 роль — формула ~A3)- Но очевидно, что из конъюнктивной формулы, сколько бы членов она ни имела, следует каждый ее член (так как не может быть, чтобы конъюнктивная формула была истинна, а какой-либо ее член — нет). Значит, если конъюнкция наших посылок истинна, истинна и формула (~A3 V ~A2) (поскольку она есть один из членов трехчленной конъюнкции, равной конъюнкции посылок). Значит, (~A3 V ~A2) есть следствие из посылок. Но в силу определения (~A3 V ~A2) = (A3 -> ~A2)- Задача решена.
Тождественно-истинные высказывания служат для выражения логически правильных форм рассуждений. Для иллюстрации этого положения приведем решение задачи восходящей к немецкому логику и математику Э. Шредеру — одному из продолжателей алгебро-логической линии исследований, начало которой было положено Булем[19]. «Один химик, имея в виду построить на этом дальнейшие заключения, выдвинул утверждение: «Соли, которые не окрашены, суть соли, которые не являются органическими телами, или суть органические тела, которые не окрашены». Другой химик с этим не согласился. Кто был прав?»
В рассуждении первого химика можно выделить следующие элементарные высказывания (суждения): «Нечто есть соль», «Нечто есть органическое тело» и «Нечто окрашено». Все рассуждение можно представить в виде следующего сложного условного суждения: «Если нечто есть соль и (это нечто) не окрашено, то (это нечто) есть соль и не есть органическое тело или есть органическое тело и не окрашено». Заменив элементарные высказывания соответственно переменными А1 A2 и A3, а вместо логических союзов «и», «или» и «если..., то» употребив знаки &, V и ->, мы можем представить логическую форму этого сложного высказывания следующим выражением: ((А1 & ~A3) -> ((A1 & ~A2) V (А2 & ~A3))). Для решения спора между двумя химиками надо определить, представляет ли оно тождественно-истинное высказывание.