Железо
Шрифт:
Во Франции, России, Германии, где также началось широкое производство и применение никелевых сталей, из них изготавливали конструкции и детали машин, испытывающие высокие и сверхвысокие по тем временам нагрузки. Для подшипников применяли хромистую и хромоникелевую сталь.
Сталь превратилась в тысячеликий материал. Однако изделия из нее имели один существенный недостаток: их рано или поздно съедала ржавчина. Особенно быстро ржавчина разрушала сталь в морской атмосфере, поэтому корабли постоянно требовали окраски для защиты от коррозии. Обычно не успевали закончить окраску, как ее надо было начинать сначала. Кисть у матроса стала одним из основных рабочих инструментов. На суше ситуация была немногим лучше, особенно в промышленных районах, где «красный дьявол» бесследно уничтожал громадные ценности. Почему же сталь не сопротивляется коррозии так, как благородные металлы? Этот вопрос стал вызовом науке, которая в это время делала свои первые шаги в области специальных сталей.
Многим казались невероятными
Действительно, делийская колонна имеет надпись, которая гласит, что она была поставлена во время царствования Самандрагупты, который жил с 330 по 380 год. Как бы то ни было, если судить по этой надписи, возраст колонны составляет уже полторы тысячи лет, а такого возраста достигали немногие изделия из железа. Так что же это, чудо или тайна? И да, и нет! Чудо — потому что весящую шесть тысяч килограммов колонну индийские кузнецы отковали из отдельных криц, пользуясь лишь ручными молотами (что почти доказано). Высочайшее достижение мастеров древности! Чудо, но не сверхъестественное, а это подтверждается хотя бы тем фактом, что мелкие куски такой нержавеющей колонны, привезенные в Лондон для исследований, очень быстро начали коррелировать. Существуют вполне реальные опасения, что выхлопные газы многочисленных автомобилей постепенно разрушат кутубову колонну, если не принять решительных мер защиты. В настоящее время проезд автомобилей вблизи колонны запрещен. То, что железная колонна в Дели сохранилась до нашего времени, представляет стечение благоприятных обстоятельств. Сталь сравнительно чистая, то есть содержит сравнительно мало шлаковых включений; содержание углерода, хотя и колеблется, но невысоко. В окружающей колонну атмосфере мало агрессивных примесей. Поверхность колонны покрыта защитным слоем жира, так как в прежние времена верующие стремились взобраться на колонну, а тела их были смазаны маслом. Подобный защитный слой можно видеть на старых железных ручках водозаборных колонок. Уходящая на шесть с половиной метров вверх железная колонна (на один метр она уходит в землю), как и дамасская сталь, является убедительным доказательством высочайшего мастерства кузнецов древней Индии. Они заслуживают уважения, даже если и не создали нержавеющей стали. В конкурентной борьбе крупных сталеплавильных концернов наука постепенно занимала все более прочное положение. Вскоре уже никто не удивлялся, если фирмы создавали собственные исследовательские лаборатории и даже целые институты. Миновали времена, когда владелец завода определял технический прогресс, а это было особенно характерно для черной металлургии, начиная с Бенджамина Ханстмена и кончая Робертом Аботом Гадфильдом. Химический анализ исходных материалов, то есть руд, топлива и добавок, а также готовых изделий стал обычным делом на металлургических заводах. Затем были введены испытания физических и механических свойств материалов, а также анализ микроструктуры, что способствовало значительному улучшению качества продукции и одновременно стало основой современной науки о металлах.
1 января 1909 года первым ассистентом в химико-физической научно-исследовательской лаборатории фирмы Фридрих Круп был назначен Эдуард Маурер. Свою докторскую шляпу он получил менее месяца назад в Высшей технической школе в Аахене. Молодой человек прожил целый год в Париже, работая у знаменитого Ле Шателье в Сорбонне, которому металлургия железа обязана значительными открытиями. Вполне очевидно, что парижский период жизни был во многом поучительным для Эдуарда Маурера, и он его хорошо использовал. Свою новую должность в лаборатории молодой человек занял, будучи отлично подготовленным.
В 1912 году Маурер и его непосредственный руководитель профессор Штраус добились большого успеха.
Уже в течение нескольких лет они изучали стали, легированные хромом и никелем. Их интересовало влияние на свойства различных режимов термической обработку Опытная сталь, обозначенная «2А», после определенной термической обработки приобретала свойства, невида— ные до сих пор. При нагреве выше 1000 градусов Цельсия и закалки в воде сталь становилась нержавеющей и в определенной степени кислотостойкой. Эта сталь и марганцовистая сталь Гадфильда оказались близкими родственниками. Сталь V2A, как ее и сегодня называют (семь десятилетий спустя после изобретения), представляет собой аустенитную сталь с таким же расположением атомов в кристаллической решетке железа, как и у марганцовистой стали. В состав ее входит 18 процентов хрома и 8 процентов никеля. За ней последовали другие легированные стали,
В 1925 году Эдуард Маурер принял кафедру металловедения во Фрайбергской академии. После войны он был назначен директором Научно-исследовательского института черной металлургии в Берлин-Хеннигсдорфе и использовал все свои знания, опыт и авторитет для создания черной металлургии Германской Демократической Республики.
Прогресс в металлургии чугуна и стали продолжался. Были внедрены новые способы получения стали. И хотя еще Бессемер предлагал использовать чистый кислород для окисления примесей чугуна, понадобилось много лет, чтобы технически осуществить процесс вдувания кислорода в конвертор сверху, получивший название ЛД-процесс. Это произошло на сталеплавильных заводах в Линце и Донавице в 1949 году. Вскоре ЛД-процесс широко вошел в практику сталеварения, и сегодня значительную долю стали получают продувкой чугуна кислородом, а не воздухом. Вакуумная плавка при помощи электронного или плазменного луча, а также изобретенный в, СССР электрошлаковый переплав позволили значительно улучшить качество стали. В настоящее время идет дальнейшая разработка способов выплавки и обработки стали. Металлурги не отказались от идеи прямого получения стали из руды, минуя процесс выплавки чугуна, как делали это когда-то, но с той разницей, что сегодня для этого используются совершенно иные технические средства. Проблема непрерывного получения стали, над решением которой работают во всех промышленно развитых странах, подтверждает мысль о том, что развитие черной металлургии продолжается.
Следует ясно себе представлять, что в течение двух с половиной тысячелетий процесс производства железа и стали был прерывным и что сегодня такими еще являются все сталеплавильные процессы. И если однажды, а этот день не за горами, об этом свидетельствуют технические достижения и уровень научных знаний, сталь будут получать в промышленных масштабах иным, непрерывным способом, то это окажется равнозначным промышленной революции и даст громадный экономический выигрыш народному хозяйству.
Одна из японских опытных установок с закрытым трехкамерным реактором работает по принципу кислородной продувки. В направлении потока расплава располагается последовательно несколько кислородных фурм. Производительность установки, по опубликованным данным, невелика и составляет менее 10 тонн стали в час, но это связано с небольшими размерами установки.
На объединенных австрийских сталеплавильных заводах (фирма VOEST) создан метод окисления чугуна впрыскиванием. Производительность этой опытной установки выше, чем японской, примерно в десять раз. Правда, эти цифры ничего не говорят о технологическом совершенстве способа, так как сопоставление возможно лишь на основе единых критериев, а для этого отсутствуют объективные данные.
В различных странах имеются экспериментальные установки, весьма экономичные с точки зрения расхода энергии, что связано с особой транспортировкой материалов. Имеются в виду установки, работающие по принципу противотока, то есть шлак и отходящие газы в них перемещаются навстречу расплавленному чугуну. Наряду с более полным использованием энергии, благодаря противотоку достигается и значительное улучшение качества стали.
Железо сегодня — важнейший металл цивилизации. Сохранится ли такое положение впредь или керамические и прежде всего высокополимарные материалы постепенно вытеснят этот металл? Не являемся ли мы свидетелями конца «железного века»?
Растущие объемы производства чугуна и стали говорят нам о другом — о том, что железо еще очень длительное время будет материалом номер один. Железо, как— никакой другой металл, используемый в технике, обладает удивительной способностью к изменению свойств, и не случайно поэтому на его основе создано более десяти тысяч сплавов.
В будущем предпочтение будет отдано технологическим процессам получения стали непосредственно из руд, а не из промежуточного продукта — чугуна. Значительное место в металлургии железа займут высокопроизводительные переплавные процессы. Нельзя точно сказать, когда именно принципиально новые технологические способы, например биотехнические, начнут в значительной степени вытеснять, заменять или хотя бы дополнять традиционные, однако, несомненно, что в ближайшие десятилетия в технике легирования и обработки стали произойдет значительный прогресс. Разработанная в последние годы термомеханическая обработка, предусматривающая проведение пластической деформации совместно с фазовыми превращениями, дала поразительные результаты. Не будет преувеличением сказать, что это первые шаги совершенно нового направления в обработке стали. Можно себе представить, что и другие научные направления в технологии обработки откроют совершенно новые аспекты, например путем направленного изменения структуры можно будет обеспечить совершенно новые по своей природе комплексы свойств. Дальнейшее развитие процессов получения и обработки стали прогнозировать пока затруднительно.