Чтение онлайн

на главную

Жанры

Животные анализируют мир
Шрифт:

Рис. 9.Перераспределение микрофиламентов в клетке на различных фазах митоза

Кажется, что микроскопический гном намотал нити микрофиламентов на клетку и с каждым витком все туже и туже делает свой моток. И опять рушатся все наши представления о живых приборах, управляющих митозом. Микрофиламентами ведь тоже надо управлять. Так почему же эти тончайшие нити, состоящие из белка актина, знают, где им надо перетянуть клетку, в какую сторону передвинуть центриоли или хромосомы и как выполнить другие

пространственные команды?

Пока непонятно, как работают устройства, принимающие непосредственное участие в митозе внутри клетки, но не лучше обстоит дело и с изучением внешних регуляторов клеточного деления. В самом деле, какой из тысячи сигналов, принимаемых живой клеткой, выступает как команда приступить к митозу? И как подается эта команда — непосредственно ли химические соединения призывают клетку к делению или же опять в этом повинны поля: электрическое, магнитное, электромагнитное излучение или комплекс полей, генерируемый самим организмом?

Вот и попробуем хотя бы кратко рассмотреть, Что известно сейчас биологам о регуляции клеточного деления и что они надеются узнать в ближайшем будущем.

Прежде всего обратим наш взор на химическую регуляцию митотической активности клеток. Ученые достигли наибольших успехов в исследовании этого запутанного вопроса и разработали ряд интересных теорий.

Давно известно, что существует целый ряд химических веществ, способных подавлять клеточные деления. Об одном таком веществе уже говорилось. Это яд колхицин, который при небольших дозах разрушает митотический аппарат в клетке и приостанавливает деление клеток. В настоящее время широко применяются в онкологии ингибирующие митозы вещества, называемые цитостатиками. Эти лекарственные препараты подавляют аэробное окисление углеводов, слегка стимулируют тканевое дыхание, подавляют синтез ДНК и уменьшают проницаемость клеточных мембран. Среди этих веществ известны алкилирующие соединения: азотистые иприты, метасульфонаты, этиленимины и эпоксидные соединения, а также различные метаболиты, то есть вещества, подавляющие обменные процессы; аналоги пуринов и пиримидинов, витамин В, антагонисты аминокислот. Целый ряд соединений растительного происхождения действует на образование митотического веретена, колхицин, подофил и алкалоиды барвинка. Наконец, в химиотерапии опухолей применяются антибиотики: актиномицин D, митомицин С. Эти вещества подавляют синтез нуклеиновых кислот.

Цель применения цитостатиков в химиотерапии опухолей понятна: нужно любыми способами остановить безудержные митозы в опухолях, задержать их рост и помочь организму справиться с постигшим его недугом. Теоретическим обоснованием к применению цитостатиков является тезис, утверждающий, что малодифференцированные опухолевые клетки более чувствительны к низким концентрациям этих веществ, чем нормальные клетки.

У цитостатиков есть одно преимущество — клиницисты и экспериментаторы могут их получать в чистом виде, знают их химический состав. Знают, на какую фазу митоза они могут воздействовать. Удалось даже получить цитостатики с высокой избирательностью по отношению к типу клеток. Например, ТЭФА — триэтилен-фосфамид подавляет митозы в лимфоидных тканях, а миелобромол — в миелоидных тканях, которых много в нервных узлах, в мозге. Казалось бы, уже можно бороться со злокачественными опухолями, но на пути этой борьбы встают отрицательные свойства цитостатиков.

Во-первых, к этим же цитостатикам чувствительны нормальные делящиеся клетки, и применение эффективных доз ограничивается из-за их побочного действия. А во-вторых, введение цитостатиков, особенно повторное, может привести к отбору. Среди злокачественных клеток появляются клетки, способные не реагировать на эти лекарственные вещества, и опухоли из таких клеток быстро разрастаются, окончательно поражая организм.

По этой причине ученые, занимающиеся проблемой регуляции клеточных делений, ищут химические вещества, действующие на клетки выборочно и мягко. Но ведь такие вещества есть в самом здоровом организме, где постоянно происходит регуляция как ингибирования, так и стимуляции митозов. Может быть, их можно выделить из тканей и применить для исправления работы поломанной машины, ведающей командами для делящихся и неделящихся клеток?

Ученых всегда интересовали такие факты в клеточном делении, на которые трудно найти ответ. В самом деле, почему клетки после нанесения травмы начинают усиленно делиться и закрывают полученный дефект? И была создана теория раневых гормонов. Смысл ее сводится к тому, что из разрушенных клеток в окружающую ткань разливается вещество, которое играет роль сигнала, побуждающего клетки вокруг травмы к делению. Возникает и второй вопрос: почему после закрытия травмы клеточные деления прекращаются, а в злокачественной опухоли они бушуют безостановочно, пока живет сам организм?

Здесь мы вплотную подошли к теории кейлонов, разработанной известным биологом В. Буллоу. Кейлоны — полная противоположность раневым гормонам: они ингибиторы и ограничители роста. Деление клеток строго контролируется ими. Когда орган вырастает до нужных размеров, в нем как раз необходимая концентрация кейлонов. Но стоит нанести травму, то есть уменьшить количество клеточных ингибиторов, как клетки усиленно начинают делиться. И это продолжается до тех пор, пока рана не закроется, а количество кейлонов при этом придет в норму.

Буллоу и Лауренс провели ряд интересных опытов, чтобы до-казать действенность своей теории. Вот один из экспериментов, проведенных ими ради выбора между теорией раневых гормонов и теорией кейлонов. Все, наверное, представляют, как тонки уши у мыши. Если у нее удалил, эпидермис с одной стороны, то через тонкое ухо химическое воздействие будет оказано и на другую сторону, и клетки на неповрежденной стороне начнут усиленно делиться. Теперь только останется пронаблюдать, какую же картину образуют клетки кожицы неповрежденной стороны уха, приступившие к митозу. Если будут действовать раневые гормоны, то на другую сторону они диффундируют из краев экспериментальной раны, следовательно, на другой стороне уха в коже митозы как бы дадут конфигурацию травмы. И совсем другое дело будет при нехватке кейлонов: если они частично уйдут при уменьшении концентрации в области травмы, то получится как бы обратная диффузия из неповрежденного эпителия кожи. Митозы, конечно, в этом случае появятся на неповрежденной стороне не в виде кольца, а примерно на той же площади, напротив которой снят эпителий. Поставили эксперимент — и подтвердилось последнее.

Подтверждение присутствия ингибитора в клетках эпидермиса кожи вдохновило ученых на дальнейшие исследования. Они получили экстракты, выделенные из кожи, и нашли, что кейлон представляет собой гликопротеид с молекулярной массой около 30 000-40 000. Дальнейшие исследования дали не менее интересные результаты. Оказалось, что кейлон не имеет видовой специфичности. Зато он органоспецифичен, действует только на митотическую активность того органа, из которого он выделен. В частности, митозы в ухе мыши могут быть приостановлены не только экстрактами, выделенными из кожи мыши, но и препаратами, выделенными из кожи свиньи, из кожи пальца человека и даже из кожи трески.

Вот какие возможности открываются для регуляции митозов как в здоровых, так и в раковых тканях. Огромное количество лабораторий мира начало заниматься изучением кейлонов. Начались поиски кейлонов в других органах, выделение кейлонов в чистом виде самыми современными методами биохимии. Ученые начали искать, на какую стадию клеточного цикла действуют эти вещества.

Познакомимся с некоторыми теориями в области онкологии, основанными на принципе приемника и передатчика.

1. Живые клетки снижают или совершенно прекращают выработку кейлонов. Они получают сигнал к делению и начинают давать беспорядочные митозы, порождая все новые и новые группы клеток, не способных вырабатывать кейлоны.

Поделиться:
Популярные книги

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Сердце для стража

Каменистый Артем
5. Девятый
Фантастика:
фэнтези
боевая фантастика
9.20
рейтинг книги
Сердце для стража

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Книга пяти колец. Том 3

Зайцев Константин
3. Книга пяти колец
Фантастика:
фэнтези
попаданцы
аниме
5.75
рейтинг книги
Книга пяти колец. Том 3

Охота на эмиссара

Катрин Селина
1. Федерация Объединённых Миров
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Охота на эмиссара

Месть Паладина

Юллем Евгений
5. Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Месть Паладина

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Охотник за головами

Вайс Александр
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Охотник за головами

Последняя Арена 10

Греков Сергей
10. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 10

Темный Охотник

Розальев Андрей
1. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник

Внебрачный сын Миллиардера

Громова Арина
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Внебрачный сын Миллиардера

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает