Чтение онлайн

на главную - закладки

Жанры

Журнал «Компьютерра» № 4 за 31 января 2006 года
Шрифт:

Очевидно, что данные о клиентах, например, американского банка мало подойдут для адекватной оценки российских заемщиков. Совершенно другие доходы, уровень жизни, менталитет делают невозможным использование такой БД даже с сильной коррекцией результатов. Классический подход к скорингу[Регрессионный анализ остается самым распространенным методом, использующимся в скоринге] предусматривает принятие положительного решения о выдаче кредита в том случае, если выходной показатель превышает некий критический порог. А выходной показатель вычисляется как сумма численных характеристик параметров (возраст, количество иждивенцев, доход, наличие кредитной карты и т. д.), помноженных на соответствующий «вес» (значимость показателя в общей оценке). Да и само слово «scoring» можно перевести как «подсчет очков». Обучение системы сводится к подгонке «весов». Так вот «веса» одного

и того же параметра для США и РФ будут существенно различаться. Кроме того, очевидно, что кредитоспособность заемщика зависит не только от его собственных характеристик, но и от общей макроэкономической ситуации в стране – например, от уровня инфляции. Кстати, бескрайние просторы нашей Родины накладывают дополнительные трудности. Настраивать систему многофилиальному банку приходится для каждого региона отдельно, так как в разных уголках России люди отличаются как доходами, так и менталитетом.

В компании «Франклин & Грант», специалисты которой занимаются созданием математических моделей и их программной реализацией для решения финансовых задач, утверждают, что в России вообще не существует кредитных историй достаточной длины для обучения системы. Что уж говорить о новых типах кредитных продуктов, появляющихся в стране. Например, об ипотеке, собирать данные по которой для настройки системы нужно еще лет десять.

В ХКФБ проблему решили довольно оригинально, использовав для обучения своей системы скоринга базу данных о 4,2 млн. заемщиков из стран Центральной Европы. В этом случае «веса» различных исходных параметров получились достаточно схожими с российскими, и после небольшой коррекции под национальную специфику и текущий банк система стала работоспособной.

Если имеются выборки сравнительно небольшого размера, разумно использовать иные методы анализа, такие как метод ближайших соседей или дерево классификаций. В первом случае новому заемщику, исходя из каких-либо его характеристик, система ставит в соответствие определенную точку с соответствующими координатами. В зависимости от того, каких точек по соседству с данной большинство: «плохих» или «хороших» (которым соответствуют люди, отдавшие или не отдавшие кредит), принимается решение о выдаче денег. При использовании деревьев классификаций система обучается следующим образом. На основе имеющихся данных строится дерево. При построении все известные ситуации обучающей выборки сначала попадают в верхний узел, а потом распределяются по узлам (рис. 1). Критерий разбиения – это различные значения входного фактора.

Скоринг на практике

На сегодняшний день системы скоринга строятся на базе «универсальных» аналитических комплексов (SAS, KXEN), реализуются или в виде отдельных приложений, или как модули многофункциональных банковских комплексов (Invoretail, SOWK). В частности, анализ платежеспособности заемщика применяется в последних версиях системы RS-Loans (компания R-Style Softlab), комплексном решении по автоматизации кредитного бизнеса банков. В такой реализации скоринга есть ощутимое преимущество: ведь оценка уже интегрирована в сам процесс выдачи кредита. RS-Loans, по сути, моделирует от начала до конца бизнес-процесс кредитования в виде прохождения документов по цепочке «заявка – кредитный комитет – кредитный договор» с использованием нескольких функциональных элементов: «Кредитный договор», «Клиент», «Договор обеспечения», «Объект обеспечения», «Банковская карта», «Счет», «Операции», «График погашения», «Филиал» и т. д.

В системе предусматривается разделение всех пользователей по двум основным должностям. Первая группа – кредитные инспекторы, которые занимаются сбором и оформлением документов, инициализацией операций и т. д. Вторая группа – кредитные бухгалтеры, чьи обязанности ограничиваются бухгалтерским отражением кредитной деятельности. При надобности в систему можно добавить новые должности, наделив их необходимым набором прав. Производительность кредитного отдела система повышает прежде всего за счет наличия процедур массовой обработки договоров: начисления процентов, выноса на просрочку, расчета групп риска, формирования резервов и т. д.

Задача скоринг-функционала – рассчитать максимальный размер кредита, который можно выдать клиенту, базируясь на его анкетных данных. В системе уже есть стандартный набор показателей, который банк-заказчик системы может дополнить собственными. Не секрет, что большинство

банков использует собственные критерии оценки заемщика, в том числе довольно экзотичные, тщательно храня в тайне значимость тех или иных факторов для анализа. Иногда «для отвода глаз» в анкете даже присутствуют вопросы, ответы на которые никак не учитываются в ходе анализа. Расчет максимального размера кредита в RS-Loans для разных типов кредитования может рассчитываться по различным критериям. Так, при ипотеке, как правило, применяется схема, согласно которой максимальный размер кредита устанавливается исходя из платежеспособности заемщика и оценочной стоимости покупаемой недвижимости, а окончательная сумма выдаваемого кредита формируется с учетом наименьшего из полученных значений. В RS-Loans включен программный инструментарий для ввода аналогичных правил.

Скоринговые методики в системе имеют несколько вариантов применения. Пусть, например, покупатель желает приобрести в кредит какую-нибудь бытовую технику. При этом он имеет некоторые денежные средства, которые готов вложить. При обращении клиента к сотруднику банка последний вводит в БД информацию о заемщике + данные для скоринговых расчетов. Образец типовой анкеты в виде xls-файла поставляется в банк вместе с системой (см. таблицу). Этот образец служит основой для дальнейшей корректировки под требования конкретного банка – например, для исправления значений баллов за определенные клиентские характеристики или формирования новых шаблонов документов. В зависимости от ответов на вопросы система вычисляет максимальный размер кредита. Дальше бизнес-процесс и действия сотрудника зависят от опций схемы розничного кредитования, с учетом программной и аппаратной специфики банка, наличия выделенных каналов связи и полномочий сотрудника (наличия права подписи, например).

Этот процесс может работать по трем основным сценариям. Первый вариант используется, если в торговом центре («провайдере» услуг потребительского кредитования) есть выделенный канал для стабильной связи с главной БД RS-Loans. В этом случае данные анкеты автоматически загружаются в систему, быстро возвращается информация по платежеспособности клиента, максимальному размеру кредита и сопутствующая отчетность. Допускается введение в схему процедур проверки достоверности указанных заемщиком сведений. На основе полученного отчета сотрудник отказывает в кредите либо заключает договор на определенную сумму. Затем он заносит в систему информацию о своих действиях, подтверждаемых соответствующими документами. Вариант с единой БД и выделенным каналом наиболее удобен, так как в этом случае имеется возможность консолидировать и обрабатывать данные о заемщиках в одном месте или централизованно изменять методики скоринга. Допускается в этом варианте и использование Интернета для заполнения заявки непосредственно в HTML. Недостаток у такой схемы только один – доступ к базе по выделенному каналу не всегда возможен.

Если в торговом центре есть средства связи, но нет выделенного канала, передача данных идет по модему (GPRS– или обычному – неважно). Поскольку терминалы сотрудников, работающих с RS-Loans, могут действовать и через удаленное соединение, схема работы в этом случае практически аналогична предыдущей. По-прежнему будет использоваться единая база данных. Но есть другой вариант. Сотрудник банка может переслать анкетные данные напрямую или через Интернет в режиме безопасного соединения на сервер с БД RS-Loans. Серверный обработчик событий автоматически загрузит базу и сформирует необходимые отчеты и документы для обратной пересылки в торговый центр. Дополнительные сложности появляются в том случае, если прямая связь между местом продажи и главной БД RS-Loans отсутствует. Тогда приходится вести локальную БД клиентов, синхронизировать ее с центральной базой, обновлять и согласовывать «черный список» клиентов.

Первая модель

В модели Дюрана фигурируют группы факторов для определения степени кредитного риска и указаны коэффициенты для различных факторов, характеризующих кредитоспособность клиента:

1) Пол: женский (0,4 балла), мужской (0).

2) Возраст: 20 лет и меньше (0), 21 год (0,1), 22 года (0,2), 23 года и выше (0,3).

3) Срок проживания на одном месте: по 0,042 балла за каждый год, но не больше чем 0,42 в сумме.

4) Профессия: 0,55 – за профессию с низким риском, 0 – за профессию с высоким риском, 0,16 – другие профессии.

Поделиться:
Популярные книги

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4

Последняя Арена 4

Греков Сергей
4. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 4

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Попаданка в семье драконов

Свадьбина Любовь
Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.37
рейтинг книги
Попаданка в семье драконов

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Рота Его Величества

Дроздов Анатолий Федорович
Новые герои
Фантастика:
боевая фантастика
8.55
рейтинг книги
Рота Его Величества

Девятое правило дворянина

Герда Александр
9. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Девятое правило дворянина

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Неудержимый. Книга X

Боярский Андрей
10. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга X

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Кодекс Охотника. Книга XVI

Винокуров Юрий
16. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVI

Последний рейд

Сай Ярослав
5. Медорфенов
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Последний рейд

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие