Чтение онлайн

на главную - закладки

Жанры

Журнал "Компьютерра" №760
Шрифт:

Одна из таких технологий - плазменная, которая в области больших экранов ("плазмы" меньше 37 дюймов по диагонали не выпускаются) долго была ведущей и лишь недавно стала уступать место жидким кристаллам. Как вы увидите далее, плазменные экраны устроены весьма непросто, каждый шаг на пути совершенствования еще больше их усложняет (а значит, и удорожает), поэтому ведущие производители один за другим отказываются от плазменных панелей в пользу ЖК. На текущий момент из крупных вендоров, продолжающих развивать технологию и наращивать производство, остался, судя по всему, один Panasonic (впрочем, многие другие продолжают выпускать конечные продукты - телевизоры - на чужих панелях, полностью от их производства отказалась, кажется, только Sony).

Из-за сложности и ряда органических

недостатков (черный цвет "недостаточно черный", склонность к выгоранию, высокое энергопотребление) "плазму" можно было считать вымирающей технологией, по крайней мере с тех пор, как научились делать большие ЖК-панели. Однако тут всех - и в первую очередь самого себя - удивил Козловский, неожиданно купивший Panasonic Viera TH-R42PY85 (см. его "Огороды" в номерах 38 и 39 за этот год). Я ездил посмотреть: все правда, и черный черный, и контрастность с четкостью на недосягаемой высоте (если, конечно, оригинал подходящий - фирменный Blu-ray, а не пиратская экранка и, боже упаси, не эфирный сигнал), и вентиляторы не шумят, и фотографии демонстрируются просто восхитительно… То есть Panasonic хоть и остался в меньшинстве, но на деле доказывает, что потенциал "плазмы" не исчерпан, и даже собирается открыть новый завод.

А в чем, собственно, проблема?

Плазма - это звучит

Выше я назвал неоновые индикаторы древними - и это действительно так, поскольку явление холодного газового разряда, которое они используют, известно с середины XIX века. Лампочки-неонки были изобретены одновременно с обычными электронными лампами, в начале ХХ века[Патент на рекламную неоновую трубку был выдан французскому инженеру Жоржу Клоду еще в 1911 году. В 1920-х словосочетание Claude Neon было настолько привычным, что многие американцы полагали, будто Neon - фамилия изобретателя, а не название инертного газа.], и широко использовались в ламповой технике не только для индикации. А цифробуквенные неоновые индикаторы применялись уже в середине 1940-х годов. Потом они были вытеснены более яркими, удобными и экономичными светодиодными, а также жидкокристаллическими, и казалось, что неонкам оставили только одну область - рекламных трубок.

Но не тут-то было. Старинная неонка обрела вторую жизнь, которая продолжается и поныне, еще в 1960 году, когда в Университете штата Иллинойс Дональд Битцер вместе с двумя коллегами Робертом Вилсоном и Джином Слотоу построили первый в мире плазменный дисплей - PDP. Звучное название (более корректное, чем "неоновый" - ведь и в рекламных трубках не всегда применяется именно неон) обусловлено тем, что в этих устройствах светится действительно плазма - только не та высокотемпературная, что в термоядерных реакторах, а холодная.

Такая плазма образуется в газах под действием электрического поля высокой напряженности - например, при определенных атмосферных условиях может появляться свечение вокруг проводов линий электропередач. Снизить необходимую величину напряжения (в линиях электропередач она составляет, как известно, сотни тысяч вольт) можно, если газ разреженный, а расстояния невелики. Но все равно практически любая газоразрядная ячейка требует для зажигания относительно высокого напряжения - 130–170 В, что есть огромный недостаток "плазмы", не позволяющий, в частности, строить миниатюрные дисплеи на основе газоразрядных ячеек.

Давайте рассмотрим (без нюансов, коих очень много), как работает плазменная ячейка. Устройство "ячейки переменного тока", каковые используются во всех современных PDP, показано на рисунке. Она представляет собой герметичную коробочку, обычно довольно большую - с полмиллиметра и более (разработчики уверяют, что сделать ее размером с обычный компьютерный пиксел не составит труда, вот только почему-то не делают). Дно и стенки ячейки покрыты люминофором одного из трех цветов свечения (на рисунке - зеленого). Разряд зажигается подачей импульса высокого напряжения на адресный электрод относительно одного из верхних (дисплейных) электродов, а поддерживается нужное время более низким напряжением между двумя дисплейными электродами. В процессе

разряда ионизированный газ (та самая холодная плазма) испускает ультрафиолет, который и заставляет светиться люминофор.

При изготовлении панель наполняют смесью инертных газов на основе гелия или неона с добавлением ксенона, под низким давлением, 10–300 мм рт. ст., накладывают верхнее стекло с диэлектриком и запаивают. Активационный слой (окись магния) служит для повышения эффективности ячейки. А эффективность просто-таки фантастически низка - КПД плазменной ячейки не превышает десятых долей процента, то есть подводимая к панели мощность практически вся преобразуется в тепло. Эффективность плазменной ячейки составляет лишь 3% от ЖК, у которой, как известно, она тоже не на высоте (правда, директор "плазменного" подразделения Panasonic Хироюки Нагано утверждает, что за последний год КПД ячеек удалось повысить вдвое). И традиционные плазменные панели чудовищно прожорливы - из 500 Вт подаваемой мощности собственно в свет преобразуется не больше 0,5 Вт, остальное рассеивается в окружающую среду. Это порождает кучу проблем, связанных не только с необходимостью рассеивать тепло: например, при высокой температуре люминофор постепенно испаряется, загрязняя верхнее стекло, что и приводит к известному эффекту "выгорания" плазменных панелей.

В плазменных панелях невозможно менять интенсивность свечения с помощью изменения напряжения, потому полутона формируют, изменяя время горения ячейки в течение одного цикла работы (так называемую скважность). Поскольку речь идет о микросекундах, к быстродействию ячейки предъявляются определенные требования. "С нуля" она зажигается слишком долго; вдобавок время зажигания сильно зависит от того, как давно ячейка включалась в прошлый раз. Чтобы точнее регулировать среднюю интенсивность свечения, приходится удерживать ячейку на грани срабатывания - обычно это делают, выставляя на дисплейных электродах погашенной ячейки напряжение выше поддерживающего, но недостаточное для зажигания. Кроме того, используют вспомогательные ячейки без люминофора, которые включены постоянно и служат поставщиками ионизированного газа в основные ячейки через специальные зазоры. Все это, кроме более точного регулирования времени горения, позволяет снизить напряжение зажигания (а значит, и потребляемую мощность). Однако ведет к неприятностям другого рода - ионизированный газ хоть и очень слабо, но тоже светит, отсюда и проблемы с получением "настоящего черного".

О недостатках и проблемах этой ужасной с точки зрения нормального инженера конструкции можно рассказывать долго. Так почему же столь горячее, хрупкое и капризное чудовище обрело такую популярность?

Все дело в двух обстоятельствах. Во-первых, какое-то время ни одна массовая технология, кроме PDP, не позволяла получить плоский дисплей достаточных размеров, к тому же такой, для которого отдельные панели можно составлять в большие экраны практически без швов. Во-вторых, несмотря на жутковатые принципы устройства и отсутствие нормального черного, PDP превосходно (лучше многих ЖК-матриц) и независимо от углов обзора передают цвета, а также обладают высокой яркостью и, как следствие, контрастностью (у вышеупомянутого Panasonic TH-R42PY85 этот параметр удалось довести до 30000:1, а в динамике - аж до миллиона к одному). В студиях, конференц-залах, на эстрадных сценах плазменные панели вне конкуренции, особенно учитывая их способность работать при температурах до –60 °С.

Как показал опыт Козловского, и в домашнем секторе все не так плохо, как было еще года два назад. Например, энергопотребление удалось снизить до приемлемых величин - с учетом функции энергосбережения тот же Panasonic TH-R42PY85, согласно спецификации, требует в среднем 475 Вт, что всего на треть выше, чем могла бы потреблять ЖК-панель такого же размера (максимальный размер ЖК-телевизоров Panasonic - 37 дюймов, потребление чуть менее 200 Вт, аналогичная "плазма" потребляет около 300 Вт). Подтянулись и другие параметры.

Поделиться:
Популярные книги

Эфир. Терра 13. #2

Скабер Артемий
2. Совет Видящих
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эфир. Терра 13. #2

Я – Орк. Том 3

Лисицин Евгений
3. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Я – Орк. Том 3

Охота на разведенку

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
6.76
рейтинг книги
Охота на разведенку

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1

Решала

Иванов Дмитрий
10. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Решала

Назад в СССР: 1986 Книга 5

Гаусс Максим
5. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Назад в СССР: 1986 Книга 5

Титан империи 5

Артемов Александр Александрович
5. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи 5

Сыночек в награду. Подари мне любовь

Лесневская Вероника
1. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сыночек в награду. Подари мне любовь

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Старатель 3

Лей Влад
3. Старатели
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Старатель 3

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3

Никто и звать никак

Ром Полина
Фантастика:
фэнтези
7.18
рейтинг книги
Никто и звать никак