Знание - сила, 2003 № 08 (914)
Шрифт:
Сколько секунд понадобилось на уничтожение древней Ладзи? Уцелел ли кто-нибудь из ее жителей? Ответы на эти вопросы вряд ли когда-нибудь удастся получить. И хотя имя убийцы установлено, у нас впереди много работы. Измерения, отбор проб, картирование, ландшафтное моделирование. И вопросы: была ли катастрофа четырехтысячелетней давности единственной или не раз повторялась? И ждать ли ее повторения в ближайшем будущем?
Остается и еще вопрос, который вправе задать каждый. А нужно ли тратить силы и немалые средства на то, чтобы ворошить землю в поисках прошлого? Вместо ответа приведу выдержку из бюллетеня, выпускаемого
Наперегонки со светом
Несколько последних лет ознаменовались целой серией экспериментальных сюрпризов, связанных со скоростью света.
Можно сказать, что образовалось хотя и небольшое, однако весьма пестрое — по разбросу подходов, — но притом вполне серьезное сообщество физиков, основательно взявшихся за опьггы с этой фундаментальной константой. Вроде бы что еще можно из нее извлечь после более чем трех столетий многократных и тщательных ее измерений, разве что точнее определить?
Оказывается, не только — открылось много чего любопытного и парадоксального, связанного с ней. Как в свое время поражала невероятно большая величина этой скорости, как трудно было смириться с тем, что эта величина предельная и непреодолимая, как внезапно выяснилось ее принципиальное участие в обосновании огромных запасов внутриядерной энергии, так сегодня словно одномоментно был преподнесен целый букет неожиданностей и противоречий. Чего стоит только сообщение о том, что свет можно остановить!
За россыпью разнородных, затрагивающих чуть ли не все области физики экспериментов — блестящих, порой нобелевского ранга экспериментов, замаячила тень разобщенности, рассогласованности, фрагментаризации. Это ощущение в данном случае особо важно подчеркнуть. Дело в том, что постепенно раскрывая свои тайны, скорость света возникала практически везде, где речь шла о самых глубинах физической науки. Ее всеобщность, воистину универсальность связывали вместе расползавшиеся вширь и вглубь знания о природе, служили «скрепами» в построении единой физической картины мира. Поэтому недавние опытные результаты, вернее, многообразие их интерпретаций, можно было расценить как покушение на долго и мучительно выстраиваемую цельность.
Отсюда понятно, почему в спорах теоретиков нет никакого праздного любопытства — столь велика цена неразрешенных расхождений, тем более когда возникает соблазн пересмотреть сложившуюся картину и тем паче переписать ее на новых основаниях. Актуальности этой теме придает и практическая ее направленность. Опыты, о которых идет речь, связаны в том числе с одной из самых привлекательных научно- технических идей будущего — с созданием квантового компьютера (о нем наш журнал писал в № б за этот год) и с одним из самых загадочных явлений — передачей гравитационного воздействия (о чем мы непременно еще напишем в скором будущем).
Испанский физик Хумберто Мичинел из университета города Виго столкнулся с удивительным явлением. Он проводил опыты с лазером, замедляя его лучи с помощью специально подобранных материалов. Моделируя происходящее на компьютере, ученый рассекал замедленные лучи лазера на отдельные импульсы, длившиеся несколько миллисекунд. Оказалось, что эти пучки света начинают принимать форму капель, да и вообще ведут себя, как жидкость: они обладают поверхностным натяжением; лопаются, как капли воды, встречая препятствие. До сих пор, с физической точки зрения, это считалось невозможным. Да, свет обладает не только волновыми, но и корпускулярными свойствами, например, оказывает давление. Но разве может свет превращаться в твердое вещество или жидкость, ведь он состоит не из атомов — из фотонов? Однако в моделях Мичинела заманчиво кружились капельки света.
Конечно, экран компьютера — не лабораторная установка. Сделанные выводы надо подтвердить экспериментальным путем. Если свет и впрямь можно превращать в отдельные капли, то они найдут применение в оптическом компьютере. Подобные машины будут работать намного быстрее традиционных компьютеров. Сейчас разрабатываются оптические компьютеры, но — вот проблема! — световыми лучами трудно управлять. Другое дело — капли света! Так существуют ли они?
Еще в конце шестидесятых годов стало известно, что лазерный луч может самофокусироваться. Энергия падающей световой волны повышает коэффициент преломления среды, которая действует как фокусирующая линза. Позднее выяснилось, что в воздушной среде инфракрасные импульсы света могут вновь расширяться, если их интенсивность достигнет определенного уровня. В середине девяностых годов удалось сбалансировать фокусирующие и дефокусирующие эффекты, подобрав интенсивность и диаметр светового луча. Итак, инфракрасные импульсы длительностью всего несколько сотых фемтосекунды могли распространяться в воздухе на несколько сотен метров, не меняя диаметра (одна фемтосекунда равна 0,000 000 000 000 001 секунды).
Французский физик Стелиос Цорцакис с коллегами впервые доказали, что подобное явление возможно и в твердой среде. Во время опыта они направляли ультракороткие инфракрасные импульсы в сторону кварцевого блока. Как выяснилось, световой луч проникал в глубь кварца более чем на сантиметр, а его диаметр изменялся всего на 20 микрометров.
Это открытие пригодится при создании оптического компьютера, а также при обработке различных материалов.
В квантовом мире действует странная «телепатия»: разные частицы могут вести себя так, словно это одна и та же частица. Не способные даже обменяться информацией со своими двойниками, они, тем не менее, моментально узнают о любых переменах их свойств и вторят им. Так, можно представить себе эти частицы в виде игральных костей: если бросок одной из костей в Каире принесет «шестерку», то вторая кость, брошенная в ту же секунду на стол в Багдаде, принесет также шесть очков. Эти частицы ведут себя, словно зеркала, отражающие лишь друг друга.