Знание - сила, 2003 № 08 (914)
Шрифт:
До сих пор удавалось «связать» самое большее всего четыре атома. Чем больше частиц «сообщаются» друг с другом, тем неустойчивее их связь. Любое внешнее влияние нарушает ее.
Тем удивительнее опыт, поставленный группой датских ученых во главе с Брианом Юльсгаардом. В течение некоторого времени они удерживали в «связанном» состоянии триллионы (!) атомов.
«Связанные» атомарные облака можно использовать для телепортации квантовых состояний из одной области пространства в другую. Подобные эффекты будут играть важнейшую роль в квантовых компьютерах. Правда, вместо атомарных облаков в них будут использованы электроны в полупроводниковых материалах: спины электронов ориентируют с помощью магнитного поля, а затем направят на них лазерный
Сенсация назревала давно. Потом журнал «Physical Review Letters» сообщил, что группе итальянских физиков во главе с Ранфаньи удалось создать короткоживущий световой импульс, который на очень коротком расстоянии (меньше метра) двигался со скоростью, в пять-семь раз больше скорости света в вакууме (которая, согласно теории относительности Эйнштейна, является предельной скоростью передачи физической информации в космосе).
Сообщение вызвало легкий шумок в соответствующих научных кругах, однако не показалось вполне убедительным. Утверждения о том, что световые импульсы определенного характера могут преодолевать «световой барьер», циркулировали в физике уже с 70-х годов, и соответствующие экспериментальные результаты время от времени появлялись в печати уже с тех самых пор (например, работа Стивена Чу 1982 года), но неизменно оказывались неоднозначными. На сей раз ситуация оказалась иной.
Почти одновременно с итальянской публикацией появилось сообщение, что в журнал «Nature» подана и находится на рецензировании сенсационная статья Ли-Джунг Ванга и его коллег из Принстонского университета, описывающая эксперимент, в котором скорость светового импульса в сотни раз (!) превысила скорость света. Экспериментаторы посылали протяженный (90 метров длиной) световой импульс на прозрачную камеру длиной 6 сантиметров, заполненную газом из цезиевых атомов, и наблюдали поразительный факт: выходящий из камеры импульс появлялся по другую сторону камеры раньше, чем исходный импульс успевал войти в нее.
Возникало головокружительное ощущение, что рушится не только Эйнштейнов «световой барьер», но само представление о причинности: свет появляется из прибора раньше, чем успевает в него войти. Однако детальный анализ процессов распространения световых импульсов показывает, что ситуация не столь парадоксальна. Цезиевый газ в камере как бы восстанавливает импульс уже по его (очень дальнему) переднему фронту, не дожидаясь, пока придет его пик.
Остается лишь решить, не происходит ли здесь передача информации со сверхсветовой скоростью? Это действительно нарушило бы и основной принцип теории относительности, и принцип причинности. Однако априори, без специальной экспериментальной проверки ответить на этот вопрос нельзя. Информация, передаваемая световыми импульсами, переносится ими как целым, она «закодирована» в форме каждого импульса. Но из эксперимента не следует, что восстанавливается точная форма импульса, то есть содержащаяся в нем информация.
Вообще говоря, это отнюдь не обязательно, поскольку составляющие волны могут сложиться «по новой» с полным сохранением исходной энергии, но в совершенно иной форме, и тогда информация сменится абракадаброй. Сами авторы, Ванг и его коллеги, считают, что это именно так и что поэтому передавать «сверхсветовую» информацию с помощью их установки нельзя. Тем не менее они намерены заняться специальной проверкой этого предположения. Учитывая его принципиальную важность, такая проверка представляется жгуче желательной.
Меж тем «сверхсветовой прорыв» Ванга уже расширен, хотя и в совершенно ином направлении. Группа швейцарских физиков сообщила через Интернет, что ей удалось измерить, с какой скоростью два «взаимосвязанных»
Ничто не движется быстрее, чем свет. За одну секунду он преодолевает почти 300 тысяч километров. Прозрачные субстанции, например, стекло или вода, лишь тормозят свет, но не могут уменьшить его скорость более чем наполовину.
Несколько лет назад датский физик Лене Вестергаард Хау и ее сотрудники в Кембридже (Массачусетс) сумели уменьшить скорость света до 17 метров в секунду. Для этого они пропустили свет через оптически возбужденный сверххолодный газ из атомов натрия. Недавно им и вовсе удалось остановить свет, а потом — почти в неизменном виде — пустить его дальше. Подобный опыт успешно провела и другая группа физиков в том же Кембридже. Ими руководил Рональд Уолсуорт.
В основе обоих экспериментов лежал особый оптический феномен: под действием электромагнитного излучения даже среда, не проницаемая для света, может стать прозрачной. Обе группы ученых сумели остановить свет почти на тысячную долю секунды, сохранили все сведения о нем, а потом снова «оживили» его. Лене Вестергаард сумела даже несколько раз повторить этот опыт, наблюдая, как постепенно становится меньше интенсивность световых импульсов.
Оказалось, что спины электронов — на их свойствах и основан этот опыт — могут запоминать все характеристики световых импульсов. Это открывает совершенно новые возможности обработки и накопления информации. Их можно использовать при создании квантового компьютера, чьи возможности будут намного превосходить «таланты» обыкновенного ПК.
Квантовый компьютер пытаются создать разными способами. Чем хорош этот? Спины электронов гораздо устойчивее, чем возбужденные состояния электронов в атомах. Впрочем, если использовать спины в квантовом компьютере в качестве запоминающих элементов, все равно нужно думать о том, как повысить их надежность.
В январе 2003 года на очередном заседании Американского астрономического общества было сообщено, что впервые удалось сравнительно точно определить скорость распространения гравитации. Это сделали Сергей Копейкин из университета Миссури и Эд Фомалон из Национальной радиоастрономической обсерватории США. Эксперимент был поставлен в сентябре прошлого года, когда Юпитер, самая массивная планета Солнечной системы, проходил мимо мощного источника излучения — квазара J0842+1835, расположенного в 9 миллионах световых лет от Земли. Исследователи измерили положение квазара на небе относительно двух соседних квазаров и оценили, насколько смещается его излучение под действием гравитационного поля Юпитера. Это и позволило вычислить скорость гравитации.
По теории Ньютона, сила гравитации распространяется мгновенно, а по теории Эйнштейна — со скоростью света. «Однако до настоящего времени, — подчеркнул Сергей Копейкин, — никто не измерил этот показатель». Российский астроном М. Прохоров из ГАИШ так прокомментировал разницу между этими воззрениями: «Если бы Солнце мгновенно исчезло, то, по ньютоновской теории, Земля в тот же миг покинула бы свою орбиту, а, согласно общей теории относительности Эйнштейна, около восьми минут в ее движении не происходило бы никаких изменений».