Звезда Смерти Гизы
Шрифт:
Но почти сразу же после того, как фон Ньюман доказал это, физик Дэвид Бём доказал обратное.
Бём сконструировал модель электрона, обладающего изначальными динамическими атрибутами, соответствовавшую предсказаниям квантовой теории. Он сделал это, соединив электрон с новым полем, которое он назвал пилотной волной, «наблюдаемой лишь косвенно, через ее воздействие на электрон. В модели Бёма квантовое вещество не является единой субстанцией, сочетающей волновые и материальные свойства, но представляет собой две отдельных сущности, реальная волна плюс реальная частица» [222] .
222
Ibid, р. 48–49.
В этой модели есть только одна проблема, вытекающая из предпосылки о постоянстве скорости света как верхней границы для любого ускорения. Для того чтобы теория Бема работала, «каждый раз, когда где-либо что-то меняется, пилотная волна мгновенно сообщает электрону об этом
223
Ibid.. p. 50.
Модель Бёма привела к еще одному революционному сдвигу парадигм в теоретической физике XX века — к созданию теоремы Белла о нелокальной взаимосвязи. Джон Стюарт Белл был ирландским физиком, который в 1964 году работал на ускорителе элементарных частиц ЕС в Женеве. Именно в этом году он взял академический отпуск и решил изучить проблему квантовой реальности.
Сначала Белл задался вопросом: как Бём смог создать модель электрона для обычной реальности, когда фон Ньюман доказал, что никто не сможет этого сделать? Модель Бема выполняла поставленную задачу: она воспроизводила результаты квантовой теории, пользуясь реальностью, состоящей только из обычных объектов. Значит, ошибка должна была заключаться не в модели Бема, а в доказательстве фон Ньюмана.
…Изучая доказательство фон Ньюмана, Белл размышлял о том, можно ли найти действительно железный аргумент, который установил бы жесткие ограничения для моделей реальности, стоящих за квантовыми фактами.
…На основе квантовой теории и математического анализа Белл смог показать, что любая модель реальности — обычной или контекстной — должна быть нелокальной. В локальной реальности ничто не может двигаться быстрее света. Теорема Белла гласит, что в любой реальности такого рода информация передается недостаточно быстро для того, чтобы объяснить квантовые факты; следовательно, реальность должна быть нелокальной.
…Предположим, реальность состоит из контекстных сущностей, которые не обладают собственными атрибутами, но приобретают их в момент измерения (такой тип реальности был близок взглядам Бора и Гейзенберга). Теорема Белла требует, чтобы контекст, определяющий атрибуты таких сущностей, включал области за пределами световых скоростей, где происходит фактическое измерение. Иными cловами, лишь нелокальные контекстные реальности могут объяснить факты.
Теорема нелокальной взаимосвязи является еще одним жизненно важным компонентом физических принципов, воплощенных в Гизе, поскольку две нелокальные системы — Солнечная система и галактика Млечный Путь — гармонически сопряжены таким образом, что из них можно черпать инерциальную энергию. Это подразумевает мгновенный перенос информации (инерциальной энергии) из геометрической конфигурации трех систем: земной, солнечной и галактической. Идея о том, что реальность представляет собой нелокальный субстрат квантового вещества или эфира, уже встречалась в предыдущей главе.
Что же на самом деле подвергается измерению в квантовой механике? Этот вопрос приводит к сути проблемы, называемой «проблемой квантовых измерений». Если во вселенной существует одна универсальная сила, которой подчиняются все квантовые и иные объекты, то это гравитация. «Каждый объект, который мы наблюдаем, постоянно пульсирует в такт с гравитационным ритмом отдаленных звезд» [224] . Как мы убедимся, Великая Пирамида пульсирует в такт множеству планетарных и небесных ритмов. Для того чтобы понять эту проблему, нам нужно вернуться к фотоэлектрическому эффекту и четвертому варианту теории квантовой механики, так называемой сумме или «интегральному пути» американского физика Ричарда Фейнмана. Если мы модифицируем фотоэлектрический эксперимент и выстрелим) пучком света через очень узкое отверстие по металлическому листу, выбитые электроны будут образовывать концентрические окружности — волновую форму, довольно похожую на концентрические волны, возникающие после того, как мы бросаем камень в пруд.
224
Herbert, op. cit, p. 131.
Квантовая механика говорит нам, что динамические атрибуты электрона — его момент движения и положения в пространстве — являются контекстными, т. е. до определенной степени создаются самим актом измерения или испытывают его влияние. Если мы снова модифицируем эксперимент и поместим рядом два отверстия, через которые проходит каждый фотон света, то увидим классическую схему интерференции, где интерферометром служит экран или тонкий лист металла. Проблема в том, какую траекторию выбрал фотон? Отвечая на этот вопрос, Фейнман, по сути дела, сказал, что хотя нельзя определить, какую траекторию выбрал от-дельный фотон, можно усреднить траектории нескольких фотонов и получить некую статистическую историю траекторий, выбранных с наибольшей вероятностью.
Впрочем, концепция статистического усреднения не решает проблему, а лишь обостряет ее. По одной версии это означает, что физики не могут представить какое-либо физическое состояние квантовой системы в классическом смысле, но могут описать ее лишь как «волну вероятности». Но описание вероятности, как и любой другой аспект человеческого опыта, все равно должно быть выражено в терминах классической конкретной реальности. Где же проходит граница между нашим классическим, или реальным, миром и миром квантовых явлений? [225]
225
Herbert, op. cit, p. 142.
Эксперимент с двумя отверстиями или щелями сталкивается с другим затруднением. Если мы излучаем фотоны через щели, то согласно квантовой теории конкретный фотон проходит через одну, другую или даже через обе щели. Тогда почему идентичные квантовые сущности должны как-либо отличаться друг от друга? [226]
Великая Пирамида предлагает возможный ответ на этот вопрос: квантовые взаимодействия являются реакциями на квантовые состояния самого измерительного устройства через теорему нелокальности Белла. Здесь важно понять смысл сказанного. Утверждать, что квантовые состояния измеряемых систем до некоторой степени являются результатом квантовых состояний измерительной системы — все равно, что сказать, будто атомы состоят из измерительных инструментов, а не наоборот. По словам Гейзенберга, «лишь при выворачивании привычной реальности наизнанку стало возможно связать химические и механические концептуальные системы непротиворечивым способом» [227] . Иными словами, в доквантовой физике макроскопические объекты, такие как планета или Солнце, получали объяснение в терминах атомов, из которых они состоят. Новая концепция переворачивала все с ног на голову. Атомы и субатомные частицы получали объяснение в терминах макроскопического контекста, в котором они существуют [228] .
226
Ibid.
227
Herbert, op. cit., p. 144.
228
Ibid.
Теперь предстоит сделать последний шаг. Фейнмановский принцип «суммы всех историй» применительно к фотоэлектрическому эксперименту с двумя щелями для выхода фотонов означает, что фотон одновременно избирает все возможные траектории по направлению к мишени. Джон фон Ньюман постулировал такой подход как единственно возможныйвзгляд на мир. С его точки зрения, траектория любой частицы следует «безжалостному территориальному императиву, требующему осуществлять все ее возможности одновременно. Тот факт, что большинство элементарных частиц уничтожается разрушительной интерференцией. ни в коей мере не меняет ее основной задачи: «наполни Землю своей сущностью!» [229] Иными словами, такие объекты, как планеты, звезды или атомы в классическом смысле, возникают в результате исключения всех прочих альтернатив. Отсюда следует, что правильно подобранный тип интерференции, обладающий волновой формой, т. е. правильными гармониками этих объектов, может попросту исключить или аннулировать сами объекты. Таким образом, в любом объекте можно установить интерференцию, заставляющую его частицы снова избирать все возможные пути; при этом объект подвергнется дезинтеграции в бурном катаклизме всевозможных видов энергии.
229
Ibid., p. 145, курсив добавлен.
Для Бора это означало, что атрибуты электрона являются отношениями между электроном и измерительным устройством. «Так называемые атрибуты представляют собой не изначально присущие свойства квантовых систем, а проявления всей экспериментальной ситуации» [230] . Таким образом, можно сказать, что реальность независимо от масштаба существует в некотором квантовом состоянии.
В предыдущей главе мы уже встречались с концепцией электромагнитной плазменной космологии шведского физика Ханнеса Алфвена [231] , Лернер дает следующее резюме этой новой космологии:
230
Herbert, op. cit., p. 161. Кстати, идея об относительности атрибутов принадлежит не Бору: се можно найти у Фомы Аквинского, что снова указывает на тесную связь между религией, метафизикой и физикой. См. Aquinas, Summa Contra gentiles, Pt. 4, Question 2, Art. 5.
231
Ясное и подробное описание этой космологии проблемы связи между теорией, наблюдением и экспериментом: см. Eric J. Lerner, The Big Dang Never Happened(New York: Vintage Books, 1992).