Чтение онлайн

на главную

Жанры

Звезда Смерти Гизы
Шрифт:

Начиная с 1936 года в ряде оригинальных статей Алфвен обозначил основы концепции, которую впоследствии назвал космической электродинамикой — наукой о плазменной вселенной. Убежденный в том, что электрические силы участвуют в создании космических лучей, Алфвен разработал… метод экстраполяции лабораторных моделей на космическое пространство… Он знал, как создаются высокоэнергетические частицы в лабораторных условиях; в циклотроне, изобретенном на шесть лет раньше, электрические поля использовались для ускорения частиц, а магнитные поля — для направления их траекторий, Алфвен задумался об устройстве природного, космического циклотрона,

…Но как быть с проводящей средой? Предполагалось, что космос является вакуумом, который не может проводить электрический ток. Здесь Алфвен снова сделал смелые экстраполяции от лабораторных опытов. На Земле даже крайне разреженные газы могут переносить электрический ток в ионизированном состоянии — то есть если электроны были сорваны с оболочек атомов…

Алфвен рассудил, что такая плазма должна существовать и в космосе [232] .

232

Lerner, op. cit., p. 181.

Это рассуждение не выглядит особенно революционным, если не обращать внимания на своеобразную особенность его теорий: «определенная ключевая переменная не меняется с изменением масштаба; электрическое сопротивление, скорость и энергия остаются постоянными. Другие величины подвержены изменениям: к примеру, время масштабируемо, поэтому, если процесс происходит на уровне в миллион раз меньшего масштаба, он протекает в миллион раз быстрее» [233] . Иными словами, главное затруднение в пострелятивистской физике — примирение принципа относительности с квантовой механикой — удается полностью обойти. Обратите внимание, что первичным дифференциалом является время, о чем мы уже говорили в предыдущей главе, но другие законы действуют независимо от масштаба [234] .

233

Lerner, op. cit., p. 192, курсив добавлен.

234

Ibid., p. 193: «В повторном издании своей книги «Космическая электродинамика», написанной вместе с Фолтхаммером в 1963 году, Алфвен ставит процесс образования волокон на центральное место в создании гомогенной плазмы от лабораторных условий до звездных туманностей — огромных облаков светящегося газа, окружающих многие звездные скопления в галактике. Алфвен доказывает, что, когда электрический ток протекает через плазму, он должен иметь форму волокна для движения по силовым магнитным линиям. Таким образом, существует возможность создавать спиральные волокнистые образования в сильно разряженной плазме в лабораторных условиях. Более того, эти спиральные образования почти точно воспроизводили форму различных наблюдаемых галактик («что наверху, то и внизу»).

Поскольку время, в отличие от электромагнитных сил, чувствительно к изменению масштаба, следует революционный ВЫВОД:

Не менее важным является обратное применение правил масштабирования. Когда магнитные поля и электрические токи этих объектов уменьшаются в масштабе, они становятся невероятно интенсивными — миллионы гаусс, миллионы ампер — далеко за пределами той мощности, которой можно достигнуть в лаборатории. Однако Алфвен утверждает, что, исследуя космические феномены, ученые могут многое узнать об устройстве и действии механизмов термоядерного синтеза гораздо более мощных, чем существующие до сих пор. Фактически они сами могут научиться конструировать такие механизмы [235] .

235

Lerner, op. cit., p. 192–193.

Сочетание электромагнитных вихревых процессов с ядерным синтезом содержится в патенте плазмотрона Фил о Фарнсуорта (см. ниже), где виртуальное электрическое поле используется для стабилизации реакции ядерного синтеза в облаке Ионизированного газа, т. е. плазмы.

Но следует обратить внимание на другой момент. Лернер четко указывает, что если удастся каким-то образом подключиться к инерциальным и электромагнитным процессам во вселенной, то могут быть созданы «механизмы ядерного синтеза гораздо более мощные, чем существующие до сих пор». О каких механизмах ядерного синтеза он говорит? Ни в одном реакторе типа «Токамак» еще не было достигнуто стабильной контролируемой реакции ядерного синтеза, и маловероятно, что Лернер знает о плазмотроне Фарнсуорта, поскольку он нигде не упоминает об этом (хотя конструкция плазмотрона основана на таких же теоретических предпосылках). Тогда единственное, что остается — термоядерные бомбы, хранящиеся во французских, американских и русских арсеналах.

Разумеется, «подключение» к небосводу можно найти в сооружениях Гизы и в самой Великой Пирамиде. Как мы убедимся в последней главе, есть веское основание полагать, что в ней использовались те электромагнитные свойства плазмы, о которых идет речь.

В своей статье, опубликованной в 1942 году, Алфвен предложил рассмотреть другие аспекты плазменной космологии:

Если проводящую жидкость поместить в постоянное магнитное поле, каждое движение жидкости будет приводить к колебаниям электромагнитного поля и возникновению электрических токов. Из-за магнитного поля эти токи создают механические силы, которые изменяют состояние движения жидкости. Таким образом, создается некая разновидность электромагнитной — гидродинамической волны, которая, насколько мне известно, еще не привлекала внимания исследователей.

Это, как мы увидим в следующей главе, очень похоже на электроакустические волны, открытые Теслой в его экспериментах с высокочастотным постоянным импульсным током.

Но существуют черты еще более глубокого сходства между палеофизическим эфиром и современной плазменной космологией. Одна из них — концепция о том, что вселенная имеет волокнистую и ячеистую структуру. В ней содержатся «электрические слои» различной плотности:

Космическая плазма часто не гомогенна, но обнаруживает волокнистые структуры, по всей вероятности, связанные с электрическими токами параллельными линиями магнитного поля… В магнитосфере есть тонкие и довольно стабильные токопроводящие слои с отдельными участками разной намагниченности. плотности, температуры и тд. Несомненно, сходные феномены существуют и в более отдаленных регионах. Отсюда следует вывод, что пространство имеет ячеистую структуру (или, правильнее, ленточно-ячеистую структуру) [236] .

236

Hannes Alfvеn, «On Hicrarchial Cosmoiogy», Astrophysics and Space Science, Vol 89, (Boston: D. Rеidel, 1983), 313–324, p. 314.

В этой статье Алфвен аргументирует неравномерное (негомогенное) распределение вещества во вселенной, указывая на существование верхнего предела для размера объектов, который называется «пределом Лапласа-Шварцшильда» или «пределом нестабильности» [237] . Здесь стоит процитировать его комментарий к этому ограничению: «Эта нестабильность не может быть обусловлена высвобождением ядерной энергии (как в недрах звезд), так как для больших объектов мы считаем это недостаточным. Таким образом, если мы не хотим провозглашать новые законы природы, остаются лишь два источника энергии: гравитация и аннигиляция [238] .Как мы убедимся, существует возможность, что конструкция Великой Пирамиды каким-то образом предусматривала доступ к гравитационной энергии и управление ею.

237

Ibid, p. 318.

238

Alfven. op. cit., p. 319, курсив в оригинале.

Обширные регионы вселенной, лишенные вещества, привели ученых к предположению, что она имеет «комковатую» структуру Это может быть одним из самых глубоких прозрений плазменной космологии. Здесь нужно привести комментарий Алфвена, так как он заслуживает подробного разбора.

Это означает, что звезды должны быть организованы в галактиках типа C 1; большое количество этих галактик образует галактику типа G 2, (в наши дни предпочитают говорить о «галактическом скоплении»). Большое количество галактик этого типа образует еще более крупную структуру G 3и так до бесконечности. Шартье показал, что средняя плотность структуры, имеющей размер R, должна подчиняться соотношению

р ~R – X,

где х > 2. Это приводит к концепции бесконечной вселенной с бесконечной массой, но со средней нулевой плотностью.

Что это значит?

Как мы помним, в дискуссии о матричной алгебре упоминалось о существовании специальных правил сложения, вычитания, умножения и деления для матриц. Представьте себе матрицу, отображающую среднюю плотность вещества во вселенной. Разумеется, это будет очень сложная структура, но, тем не менее, если просуммировать все элементы матрицы, в итоге получается ноль. Это называется «матрицей с нулевой суммой» и представляет то, что наблюдатель, внешний по отношению к вселенной (Бог), должен видеть в контексте ее средней плотности. Из начальной арифметики нам известно, что любое количество нулей равно нулю. То же самое справедливо для линейной или матричной алгебры, где такое количество называется «скалярной величиной», которая в физике представляет «величину силы», но без какого-либо направления.

Это очень важное соображение, поскольку любую точку в космическом вакууме можно представить в виде такой матрицы. Представьте себе, что вы держите в руке резиновый мячик и сжимаете его. Внутри мячика есть сила, но невидимая для внешнего наблюдателя. Теперь представьте, что вы построили математическую модель сжатого резинового мячика на основе матрицы с нулевой суммой. Сжимающая сила, которую вы прилагаете к мячику, является скалярной, но, поскольку современная физика пользуется этой матричной математикой для моделирования множества объектов, она скажет вам, что сила в точке приложения отсутствует.

Поделиться:
Популярные книги

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Я – Орк

Лисицин Евгений
1. Я — Орк
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я – Орк

Последний попаданец 12: финал часть 2

Зубов Константин
12. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 12: финал часть 2

Раб и солдат

Greko
1. Штык и кинжал
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Раб и солдат

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

Защитник

Кораблев Родион
11. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Защитник

Шатун. Лесной гамбит

Трофимов Ерофей
2. Шатун
Фантастика:
боевая фантастика
7.43
рейтинг книги
Шатун. Лесной гамбит

Бестужев. Служба Государевой Безопасности

Измайлов Сергей
1. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности