Звезды: их рождение, жизнь и смерть
Шрифт:
|
Рис. 10.1: Зависимость массы белых карликов от их радиуса. |
Коль скоро это так, должно быть некоторое универсальное соотношение, связывающее массы белых карликов и их радиусы. В нашу задачу не входит вывод этой важной зависимости, который далеко не является элементарным. Сама зависимость (в логарифмическом масштабе) представлена на рис. 10.1. На этом рисунке кружки и квадратики отмечают положение некоторых белых карликов с известными массами и радиусами. Приведенная на этом рисунке зависимость массы и радиуса для белых карликов имеет две любопытные особенности. Во-первых, из нее следует, что чем больше масса белого карлика, тем меньше его радиус. В этом отношении белые карлики ведут себя иначе, чем шары, выполненные из одного блока металла... Во-вторых, у белых карликов существует предельное допустимое значение
27
На это обстоятельство впервые указал советский физик-теоретик Я. И. Френкель в 1928 г. За два года до этого английский физик Р. Фаулер впервые применил теорию вырожденного газа для объяснения природы белых карликов. Полная теория белых карликов была развита Чандрасекаром.
28
Учет «нейтронизации» вещества при большой плотности (см. § 22) снижает этот предел до 1,2M .
Этот результат имеет исключительно большое значение для всей проблемы звездной эволюции. Поэтому стоит остановиться на нем несколько подробнее. По мере увеличения массы белого карлика его центральная плотность будет все более и более расти. Вырождение электронного газа будет становиться все сильнее. Это значит, что на одну «дозволенную» траекторию будет приходиться все большее число частиц. Им будет очень «тесно» и они будут (дабы не нарушать принцип Паули!) двигаться все с большими и большими скоростями. Эти скорости станут довольно близкими к скорости света. Возникнет новое состояние вещества, которое называется «релятивистским вырождением». Уравнение состояния такого газа изменится — оно уже не будет больше описываться формулой (10.1). Вместо (10.1) будет иметь место соотношение
| (10.4) |
Для оценки создавшейся ситуации положим, как это делалось в § 6,
Между тем сила гравитации равна
Допустим теперь, что масса меньше критической. Тогда сила, обусловленная давлением, будет больше гравитационной, следовательно, звезда начнет расширяться. В процессе расширения релятивистское вырождение сменится обычным «нерелятивистским» вырождением. В этом случае из уравнения состояния P
Этот качественный анализ иллюстрирует,
Вещество недр белых карликов отличается высокой прозрачностью и теплопроводностью. Хорошая прозрачность этого вещества опять-таки объясняется принципом Паули. Ведь поглощение света в веществе связано с изменением состояния электронов, обусловленном их переходами с одной орбиты на другую. Но если подавляющее большинство «орбит» (или «траекторий») в вырожденном газе «занято», то такие переходы весьма затруднены. Только очень немногие, особенно быстрые электроны в плазме белого карлика могут поглощать кванты излучения. Теплопроводность вырожденного газа велика — тому примером служат обыкновенные металлы. По причине очень высоких прозрачности и теплопроводности в веществе белого карлика не могут возникать большие перепады температуры. Почти весь перепад температуры, если двигаться от поверхности белого карлика к его центру, происходит в очень тонком, наружном слое вещества, который находится в невырожденном состоянии. В этом слое, толщина которого порядка 1% от радиуса, температура возрастает от нескольких тысяч кельвинов на поверхности примерно до десяти миллионов кельвинов, а затем вплоть до центра звезды почти не меняется.
|
Рис. 10.2: Эмпирическая зависимость светимости белых карликов от их температуры. |
Белые карлики хотя и слабо, но все-таки излучают. Что является источником энергии этого излучения? Как уже подчеркивалось выше, водорода, основного ядерного горючего, в недрах белых карликов практически нет. Он почти весь выгорел на стадиях эволюции звезды, предшествовавших стадии белого карлика. Но, с другой стороны, спектроскопические наблюдения с очевидностью указывают на то, что в самых наружных слоях белых карликов водород имеется. Он либо не успел выгореть, либо (что более вероятно) попал туда из межзвездной среды. Не исключено, что источником энергии белых карликов могут быть водородные ядерные реакции, происходящие в очень тонком сферическом слое на границе плотного вырожденного вещества их недр и атмосферы. Кроме того, белые карлики могут поддерживать довольно высокую температуру своей поверхности путем обычной теплопроводности. Это означает, что не имеющие источников энергии белые карлики остывают, излучая за счет запасов своего тепла. А эти запасы весьма солидны. Так как движения электронов в веществе белых карликов обусловлены явлением вырождения, запас тепла в их недрах содержится в ядрах и ионизованных атомах. Полагая, что вещество белых карликов состоит в основном из гелия (атомный вес равен 4), легко найти количество тепловой энергии, содержащейся в белом карлике:
| (10.5) |
где mH — масса атома водорода, k — постоянная Больцмана. Время охлаждения белого карлика можно оценить, поделив ET на его светимость L. Оно оказывается порядка нескольких сотен миллионов лет.
На рис. 10.2 для ряда белых карликов приведена эмпирическая зависимость светимости от поверхностной температуры. Прямые линии суть геометрические места постоянных радиусов. Последние выражены в долях солнечного радиуса. Похоже на то, что эмпирические точки хорошо укладываются вдоль этих прямых. Это означает, что наблюдаемые белые карлики находятся на разных стадиях остывания.
В последние годы для десятка белых карликов было обнаружено сильное расщепление спектральных линий поглощения, обусловленное эффектом Зеемана. Из величины расщепления следует, что напряженность магнитного поля на поверхности этих звезд достигает огромного значения порядка десяти миллионов эрстед (Э). Столь большое значение магнитного поля, по-видимому, объясняется условиями образования белых карликов. Например, если предположить, что без существенной потери массы звезда сжимается, можно ожидать, что магнитный поток (т. е. произведение площади поверхности звезды на напряженность магнитного поля) сохраняет свое значение. Отсюда следует, что напряженность магнитного поля по мере сжатия звезды будет расти обратно пропорционально квадрату ее радиуса. Следовательно, она может вырасти в сотни тысяч раз. Этот механизм увеличения магнитного поля особенно важен для нейтронных звезд, о чем будет идти речь в § 22 [ 29 ] . Интересно отметить, что большинство белых карликов не имеет поля более сильного, чем несколько тысяч эрстед. Таким образом, «намагниченные» белые карлики образуют особую группу среди звезд этого типа.
29
Из-за наличия сильного магнитного поля излучение белых карликов должно быть слегка поляризовано по кругу. Изучая зависимость этой поляризации от времени, можно, в принципе, определить периоды вращения белых карликов. В тех немногих случаях, для которых эти очень деликатные наблюдения были выполнены, периоды осевого вращения оказались довольно значительными, порядка суток. Этот результат должен иметь существенное значение для проблемы звездной эволюции.