Звезды: их рождение, жизнь и смерть
Шрифт:
Особую проблему представляет объяснение отсутствия 35-дневного цикла в оптической переменности HZ Геркулеса. Ведь если оптическая переменность этой звезды объясняется ее нагревом мощным потоком рентгеновского излучения от второй компоненты, то почему этот нагрев продолжается и в течение 24-х дней 35-дневного периода, когда источник рентгеновского излучения «выключен»? Здесь могут быть два объяснения, отнюдь не исключающие одно другое. Во-первых, можно предположить, что диаграмма излучения рентгеновского пульсара участвует в двух движениях. Если излучающая область не совпадает с полюсами вращающейся нейтронной звезды (а, например, находится около магнитных полюсов, как у радиопульсаров), то из-за вращения этой звезды около оси диаграмма излучения будет периодически проходить через наблюдателя. Здесь геометрия такая же, как у радиопульсаров. Представим себе теперь, что сама ось вращения описывает прецессионное движение (так называемая «свободная прецессия», вызванная небольшой асимметрией в распределении массы в нейтронной звезде) с периодом около 35 дней. Тогда можно представить себе, что в течение почти 2/3 этого периода диаграмма излучения рентгеновского пульсара не будет «смотреть» на Землю ни при какой фазе осевого вращения. В то же время она всегда будет направлена на какую-то часть поверхности находящейся рядом оптической звезды, которая находится достаточно близко и видна под большим телесным углом.
Недостатком этой модели являются довольно жесткие ограничения геометрического характера. Подозрительным
56
В 1975 г. было обнаружено мягкое рентгеновское излучение этого источника.
Итак, вся совокупность наблюдательных данных говорит о том, что рентгеновские источники, входящие в состав двойных систем, представляют собой весьма компактные объекты с массой, близкой к массе Солнца. Почти наверное это нейтронные звезды, очень быстро вращающиеся вокруг своих осей. Нужно теперь разобраться в главном вопросе: в чем причина столь мощного рентгеновского излучения нейтронных звезд, входящих в состав двойных систем? Конечно, о ядерных источниках здесь говорить не приходится. Остаются только два источника: кинетическая энергия вращения такой звезды и потенциальная гравитационная энергия, освобождаемая при падении на поверхность нейтронной звезды газовых масс. Последний механизм называется «аккрецией». Сразу же нужно сказать, что если рентгеновские пульсары — это нейтронные звезды, то первый из упомянутых выше источников энергии отпадает. В самом деле, в случае источника Центавр Х-3 экваториальная скорость нейтронной звезды должна быть около 10 км/с. Следовательно, кинетическая энергия вращения этой звезды должна быть
Гораздо более эффективным источником энергии является падение на поверхность нейтронной звезды облаков и струй газа. Так как радиусы таких звезд очень малы (
Как показывают расчеты, эта струя будет «питать» газовый диск, быстро вращающийся вокруг нейтронной звезды [ 57 ] . Из этого диска газ будет падать на нейтронную звезду, ускоряясь ее гравитационным полем. При падении на поверхность нейтронной звезды приобретенная газом энергия превратится в излучение. Наличие у нейтронной звезды сильного магнитного поля усложняет эту картину движения газовых струй в тесной двойной системе. Падающая на нейтронную звезду струя газа будет на некотором расстоянии от нее (там, где плотность магнитной энергии равна плотности кинетической энергии газовой струи) остановлена, после чего газ потечет вдоль силовых линий магнитного поля на поверхности нейтронной звезды. Таким образом, следует ожидать, что падающие от оптической звезды массы ионизованного газа будут достигать поверхности нейтронной звезды в двух сравнительно малых «пятнах», окружающих магнитные полюсы. Размеры этих «пятен» могут быть около 0,1 радиуса нейтронной звезды, т. е.
57
Необходимость образования такого диска следует из закона сохранения момента количества движения.
Мы пока еще не знаем с достоверностью, каковы те эволюционные процессы, которые приводят к образованию в тесной двойной системе нейтронной звезды. Общая проблема эволюции в таких системах уже рассматривалась в § 14. Несомненно, что нейтронная звезда в тесной двойной системе есть «конечный продукт» эволюции более массивной компоненты этой системы. Образованию нейтронной звезды должно было предшествовать существенное перетекание
|
Рис. 23.11: Схема эволюции тесной двойной системы. |
На рис. 23.11 приведена схема эволюции тесной двойной системы массивных звезд, рассчитанная голландскими теоретиками.
Наряду с «оптической» звездой, заполняющей свою полость Роша, как уже упоминалось выше, источником газа для аккреции на нейтронную звезду может быть и «звездный ветер» от оптической компоненты, достаточно удаленной от нейтронной звезды и поэтому не заполняющей своей полости Роша. В этом случае оптическая компонента—горячий сверхгигант спектрального класса О—В с массой больше 10M
a. источники, где оптическая компонента — горячий массивный сверхгигант, испускающий мощный звездный ветер; типичный представитель — Центавр Х-3;
b. источники, где оптическая компонента по массе лишь немного превышает Солнце и заполняет свою полость Роша. Типичный представитель — Геркулес Х-1.
В то время как источники первого типа находятся вблизи галактической плоскости, источники второго типа могут быть достаточно удалены от нее.
Не исключено, что обе разновидности источникой происходят от тесных двойных систем с массивными компонентами, но в то время как у источников типа а) массы компонент сходны, у источников типа б) отношение масс больше 3. Расчеты показывают, что если у более массивной компоненты M1> 10M
Характерной особенностью рентгеновских источников является наличие в ряде случаев наряду с орбитальными периодами весьма коротких периодов пульсации. Выше мы уже подробно говорили о 4,84-секундном периоде пульсаций у Центавра Х-3 и 1,24-секундном — у Геркулеса Х-1. В 1975 г. было сделано важное открытие «длинных» периодов пульсаций у рентгеновских источников. Например, у источника 0940—40, принадлежащего к типу а) и имеющего орбитальный период около 9 суток, найден пульсационный период в 283 с. Несколько длинных пульсационных периодов было найдено у так называемых «новых» (или «временных») рентгеновских источников [ 58 ] . Довольно длинный пульсационный период (405 с) был обнаружен у источника А 1118—61. Самый длинный период у известных к 1977 г. источников равен 31 минуте. Скорее всего продолжительные периоды пульсаций есть следствие торможения вращения нейтронной звезды намагниченной плазмой, в которую «погружена» двойная система. Возможно, что конкретным механизмом такого торможения является генерация вращающейся нейтронной звездой звуковых волн, а также обычная вязкость. Таким образом, период вращения нейтронной звезды — рентгеновского пульсара — как бы «подстраивается» к физическим характеристикам двойной системы, в которой он находится (период орбитального движения, мощность звездного ветра от «оптической» компоненты и пр.). Наблюдаемые вариации периодов вращения пульсаров скорее всего вызваны, в первую очередь, вариациями мощности звездного ветра, «питающего» путем аккреции нейтронную звезду.
58
Такие источники довольно часто наблюдаются на небе. Внешне это явление вполне похоже на вспышку новой звезды. Обычно эти источники наблюдаются несколько недель или месяцев, после чего гаснут. Некоторые из них достигают огромной яркости. Пока рекорд держит источник, вспыхнувший летом 1975 г. неподалеку от созвездия Ориона. Его яркость на порядок превышала яркость Скорпиона Х-1, являющегося ярчайшим из «стационарных» источников. Весьма вероятно, что по крайней мере некоторые из таких источников — это двойные системы, где нейтронная звезда движется по эксцентричной орбите, а оптическая компонента обладает сильно меняющимся по мощности звездным ветром. В случае яркого «временного» источника A 0535+26, у которого период вращения 104 с, была найдена модуляция этого периода, указывающая на орбитальное движение вокруг горячей массивной звезды с периодом либо около 40, либо около 80 суток.
У «временного» источника А 1118—61 также были обнаружены указания на наличие 8-дневного орбитального периода. Таким образом, сейчас уже почти с достоверностью можно сказать, что все «рентгеновские звезды» («постоянные», «временные», «импульсные») образуются при аккреции газа на компактные, проэволюционировавшие объекты в двойных системах.
Долгие годы, несмотря на ряд попыток, никак не удавалось доказать двойственность самого яркого рентгеновского источника Скорпион Х-1. Это оказалось очень трудной задачей, так как на ожидаемое регулярное изменение блеска оптической звезды, отождествляемой с этим источником, накладывались беспорядочные изменения с большой амплитудой. В то же время никакой периодичности в рентгеновском излучении (типа той, которая наблюдается у Центавра Х-3 и Геркулеса Х-1) у Скорпиона Х-1 не было обнаружено. Последнее обстоятельство, конечно, не является аргументом против двойственности этого источника: ведь вполне возможно, что плоскость орбиты наклонена под большим углом к лучу зрения!