Чтение онлайн

на главную - закладки

Жанры

...И мир загадочный за занавесом цифр. Цифровая связь
Шрифт:

Вам приходилось когда-нибудь в погожий весенний день наблюдать за показаниями температуры на городском световом табло? Уже ласково светит солнце, хотя в воздухе еще прохладно. Вот краешек солнца закрыла тучка, и температура чуть понизилась. Тучка прошла — и вновь стало теплее. Дуновение ветра также заставляет "скакать" цифры на электронном табло. Если через очень короткие промежутки времени (скажем, через 1 с) наносить значения температуры воздуха на график, то получим множество точек, отражающих изменения температуры. Таким образом, имеем дело не с непрерывной кривой изменения температуры, а лишь с ее значениями, отсчитанными через определенные промежутки времени. По сути говоря, мы описали некоторый непрерывный процесс последовательностью десятичных цифр.

От

десятичной системы счисления легко перейти к двоичной системе счисления (см. главу "Внимание: конкурент!"). И пусть нас не смущает, что температура выражается не целым числом. Можно просто-напросто не обращать внимания на запятую, отделяющую десятые доли градуса, и записывать в двоичной форме, например, не число 15,6 °C, а число 156: ведь знаем же мы, в конце концов, что температура воздуха не может выражаться ни числом 1,56 (так как она высвечивается на табло с точностью до десятых долей градуса), ни числом 156.

Невыясненным остался вопрос, как часто следует брать отсчетные значения непрерывной кривой, чтобы отследить все ее изменения. Так, при более длительных промежутках времени между наблюдениями за температурой воздуха не удастся отследить все ее быстрые изменения.

Давление звуковой волны, распространяющейся от струны, изменяется во времени по закону синусоиды. Чтобы отследить все ее изменения, очевидно, достаточно брать отсчетные значения в моменты, соответствующие максимумам и минимумам синусоиды, т. е. с частотой, превышающей, по крайней мере, вдвое частоту звукового колебания. Например, если струна совершает 20 колебаний в секунду (частота 20 Гц), максимальное звуковое давление будет наблюдаться через каждую 1/20 с, т. е. через 50 мс. (Напомним, что 1 с = 1 000 мс = 1 000000 мкс = 1 000000000 нс.) Максимумы и минимумы кривой звукового давления разделены интервалами в 25 мс.

Значит, отсчетные значения но кривой должны следовать не реже, чем через 25 мс, или с частотой 40 отсчетов в секунду (40 Гц). Обычно отсчетные значения на кривой берут "с запасом": не в 2 раза чаще, чем колеблется звук, а, скажем, в 10 раз. В этом случае они очень хорошо передают форму кривой.

Интересен случай, когда звуковые волны излучаются двумя одновременно колеблющимися струнами. На рисунке показаны три варианта: вторая струна колеблется в 2, 3 и 10 раз чаще, чем первая. Давления двух звуковых волн на пластину, помещенную на их пути, складываются. График результирующего давления уже не является синусоидой. Мы видим, что быстрые изменения этой кривой обусловлены более высокочастотным колебанием (в данном случае колебанием второй струны). Поэтому для того чтобы отследить все быстрые изменения результирующего звукового давления, отсчетные значения следует брать с частотой, по крайней мере, вдвое превышающей частоту колебания второй струны. В последнем варианте частота взятия отсчетных значений должна превышать 400 Гц. Это означает, что отсчетные значения должны следовать не реже чем через 1/400 = 0,0025 с = 2,5 мс, а лучше — еще чаще, например через 0,5 мс.

До сих пор мы намеренно упрощали задачу, когда считали, что давление звуковой волны, создаваемой струной, изменяется по закону синусоиды. На самом деле это не так. График колебания реальной струны, а следовательно, график звукового давления, отличается от синусоиды. Дело в том, что всякое вибрирующее тело создает одновременно звуки нескольких частот или, как говорят, тонов. Самый низкий из них называют основным тоном, более высокие тоны, сопровождающие основной, — обертонами. При звучании гитары, скрипки, рояля всегда слышны кроме основного тона дополнительные призвуки, т. е. обертоны. Так, если принять частоту основного тона (синусоидальное колебание) равной 20 Гц, то частоты обертонов (тоже синусоидальные колебания) составят: первого — 40 Гц; второго — 60 Гц, третьего — 80 Гц и т. д., а, скажем, десятого обертона — 200 Гц. В совместном звучании основной тон и обертоны создают соответствующую окраску звука, или тембр. Один тембр отличается от другого числом и силой обертонов.

Таким

образом, для получения формы кривой звукового давления, создаваемого колеблющейся струной гитары или скрипки, нужно сложить синусоидальные кривые звуковых давлений основного тона и обертонов. Подобная операция была проделана, когда рассматривали одновременные колебания двух струн. Только в данном случае из-за наличия большого числа обертонов форма результирующей кривой будет еще сложнее, т. е. еще сильнее отличаться от синусоидальной. Совершенно ясно, что для отслеживания самых быстрых изменений звукового давления отсчетные значения на результирующей кривой придется брать с частотой в несколько раз выше (по крайней мере, в 2 раза) частоты последнего обертона.

Графики давления звуковых волн, создаваемых человеческим голосом, имеют еще более сложную форму.

Человек набрал в легкие воздух и издал звук. Что же произошло? Воздух, выходя из легких, заставляет вибрировать голосовые связки. От них колебание воздуха передается через гортань голосовому аппарату, заканчивающемуся ротовой и носовой полостями. Последние выполняют роль резонаторов — они усиливают колебания воздуха, подобно тому как полый корпус гитары или скрипки, также являясь резонатором, усиливает звуки струн. Колебания воздуха из голосового аппарата человека передаются окружающему воздуху. Возникает звуковая волна. Характер издаваемого звука определяется натяжением голосовых связок, формой ротовой полости, положением языка, губ и т. д.

Из описания голосового аппарата человека нетрудно понять, что голосовые связки играют роль своеобразных струн, только они создают более обильное количество обертонов. При преобладании в человеческом голосе высоких обертонов над низкими мы слышим "звучание металла". Люди, у которых в голосе преобладают низкие обертоны, говорят мягким, бархатным голосом. Частоты основных тонов и обертонов при произнесении различных звуков разными людьми лежат в пределах 80-6 000 Гц. Это значит, что при замене непрерывной кривой звукового давления человеческой речи его отсчетные значения необходимо брать с частотой не ниже 12000 Гц (поскольку последний обертон имеет частоту 6000 Гц), или, другими словами, не реже чем через 1/12000 = 0,0000833 с = 83,3 мкс.

Итак, мы выяснили, что вся богатейшая информация, содержащаяся в звуках музыки, человеческой речи, в шумах и т. п., заключена, по сути дела, в форме кривой давления звуковой волны на пластину, поставленную на ее пути.

Может показаться, что проблема кодирования речи двоичной последовательностью 0 и 1 принципиально нами уже решена: измеряй каждые 83,3 мкс или чаще звуковое давление и полученные десятичные числа переводи в двоичный код! Теоретически все верно. Но как это реализовать практически? Мы только тогда сможем передать звуки или "законсервировать" их в электронной памяти, когда превратим двоичные цифры в импульсы электрического тока. Как выполнить такое превращение? И как из двоичного кода снова "извлечь" звук?

Нередко решение сложных инженерных задач подсказывала живая природа — самая удивительная в мире биологическая лаборатория. Например, во время первой мировой войны на кораблях английского флота устанавливали гидрофоны — приборы для прослушивания шума гребных винтов немецких подводных лодок. Чтобы движение воды у приемного отверстия не создавало мешающий шум, ему придавали форму ушной раковины тюленя, который хорошо слышит при движении в воде.

Вот уже два столетия ученые пытаются раскрыть тайны восприятия звука слуховыми органами человека. До сих пор еще не ясно, каким образом наше ухо может улавливать звуки, различающиеся по силе давления в 1013раз. Если бы существовали весы с таким же диапазоном измерений, то на них удалось бы взвешивать и горошину, и железнодорожный состав. Остается пока загадкой для ученых и то, каким образом человеческое ухо способно разбираться в совокупности тонов и обертонов, отличать один тембр звука от другого.

Поделиться:
Популярные книги

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Я снова не князь! Книга XVII

Дрейк Сириус
17. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я снова не князь! Книга XVII

Метка драконов. Княжеский отбор

Максименко Анастасия
Фантастика:
фэнтези
5.50
рейтинг книги
Метка драконов. Княжеский отбор

Авиатор: назад в СССР 11

Дорин Михаил
11. Покоряя небо
Фантастика:
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 11

На границе империй. Том 7. Часть 5

INDIGO
11. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 7. Часть 5

Темный охотник 6

Розальев Андрей
6. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный охотник 6

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Все еще не Герой!. Том 2

Довыдовский Кирилл Сергеевич
2. Путешествие Героя
Фантастика:
боевая фантастика
юмористическое фэнтези
городское фэнтези
рпг
5.00
рейтинг книги
Все еще не Герой!. Том 2

Довлатов. Сонный лекарь 3

Голд Джон
3. Не вывожу
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 3

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Ваше Сиятельство 8

Моури Эрли
8. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 8

Чемпион

Демиров Леонид
3. Мания крафта
Фантастика:
фэнтези
рпг
5.38
рейтинг книги
Чемпион