100 великих парадоксов
Шрифт:
Справедливости ради отметим: Зенон не отрицал движение как таковое, но показывал, что оно сопряжено с некоторыми парадоксами.
Зенон Элейский
В XIX веке, казалось, удалось решить «Дихотомию». Достаточно сложить ряд чисел, показывающих пройденный путь: 1/2 + 1/4 + 1/8 + 1/16 +… Сумма этого бесконечного ряда стремится к единице. Значит, Ахиллес может приблизиться к черепахе на сколь угодно малое расстояние. Возникает проблема пространства. Если
Такой предел предположил греческий мыслитель Демокрит два с половиной тысячелетия назад. Он учил: материя состоит из мельчайших неделимых частиц – атомов и пустоты (вакуума): богов придумали люди по своему образу и подобию, пытаясь объяснить мир; случайность – выражение нашего незнания; всё происходит по каким-либо причинам и законам.
Если Мир состоит из атомов (неделимых – так это слово переводится с греческого), деление отрезка пространства надвое дойдёт до атома. Таков предел, на котором движение (дихотомия) прекратится.
Теперь мы знаем, что атом делим на части. Только невозможно выяснить, можно ли продолжать его деление надвое до бесконечности. Абстрактное математическое пространство можно делить на сколь угодно мелкие части (хотя понятие «часть» предполагает нечто единое). В геометрии можно дойти до точки, которая по определению не имеет размера.
Парадокс дихотомии не имеет определённого решения. Оно зависит от некоторых предварительных условий.
В житейском аспекте мораль проста: в некоторых ситуациях надо проверить теорию на практике, не только размышлять, но и действовать. Как говорится, практика – критерий истины.
Кстати, можно оспорить этот афоризм. Известно: пресная вода кипит при +100 °C. На практике легко это доказать, но и нетрудно опровергнуть. Надо подняться на гору и нагреть воду до кипения. Её температура будет меньше ста градусов. Значит, практика не всегда критерий истины, хотя и помогает уточнить или дополнить выводы теории.
…В полемике с В. Ильиным (В.И. Лениным) философ и учёный А. Богданов-Малиновский пояснял: «Когда Маркс говорит, что критерий истины есть практика, то он выражает этим, прежде всего, именно точку зрения относительности истины. С изменением содержания практики людей изменяется и их истина. То, что было истиною в пределах практики более узкой, перестаёт быть ею в практике более широкой. А для В. Ильина “критерий практики”, это нечто вроде экзамена, после которого истине выдаётся окончательный аттестат: выдержала несколько веков, была безвредна – отлично, истина признаётся “объективной”, вечной и т. д.; не выдержала – заблуждение, и тоже объективное, вечное…»
Далеко в дебри философии заводят нас парадоксы.
Ахиллес и черепаха
Суть этой апории Зенона сходна с «Дихотомией».
Быстроногому Ахиллесу надо догнать черепаху, которая находится на расстоянии 10 000 стоп от него (стопа – примерно треть метра). Он бежит в десять раз быстрее, чем ползёт черепаха.
Но прежде чем взять старт, Ахиллес погружается в рассуждения: «Пока я пробегу десять тысяч стоп, отделяющих меня от черепахи, она продвинется на тысячу стоп. Пока я преодолею эту тысячу стоп, она проползёт сто стоп. Я преодолею и это расстояние, но она продвинется ещё дальше. Так будет продолжаться без конца: как только я достигну места, где она недавно находилась, она окажется впереди. Я буду постоянно сближаться с ней, но догнать не смогу. На то, чтобы её догнать, потребуется бесконечно много времени».
После такого безнадёжного вывода Ахиллес вынужден был сослаться на свою заболевшую ахиллесову пяту и отказаться от бега за черепахой, дабы не опозориться на глазах почтенных древних греков.
Безусловно, решись он взять старт, не размышляя, то вскоре догнал бы черепаху, если б только она не находилась где-то в неоткрытом в ту пору Новом Свете или если бы он не подвернул ногу. Но он предпочёл теорию практике.
Из этого исходил и Зенон. Судя по всему, он имел в виду не реальное движение тел, а мыслимое при определённых заранее заданных условиях. В противном случае получается, что речь идёт не о парадоксе, а о глупой задачке, которую не следует принимать всерьёз.
Примерно так высказался французский математик Поль Леви: «Как можно воображать себе, что время остановится из-за того, что некий философ занимается перечислением членов бесконечного ряда. Признаюсь, я никогда не понимал, как люди, в других отношениях весьма разумные, могут оказаться смущёнными подобными парадоксами.
Мой теперешний ответ есть тот самый, который я дал, когда мне было 11 лет, старшему, рассказавшему мне этот парадокс. Я резюмировал тогда такой немногословной формулой: “Этот грек был идиотом”. Я знаю теперь, что нужно выражать свои мысли в более вежливой форме и что, возможно, Зенон излагал свои парадоксы только для того, чтобы проверить разумность своих учеников. Но моё удивление перед умами, смущаемыми сходящимся рядом, осталось тем же».
Приятно сознавать себя умнее древнегреческого философа. Но Зенон, безусловно, понимал: реальный человек, если ему нужно догнать черепаху, побежит быстрее, чем она ползёт, и не станет каждый раз намечать себе цель там, где недавно находилась черепаха.
Из Интернета я узнал, что для решения проблем, поставленных в апориях Зенона, некоторые авторы привлекают квантовую механику. Они считают рассуждения Зенона верными, ибо бесконечное деление времени и пространства невозможно из-за соотношения неопределённости, согласно которому есть «неделимая» доля энергии – квант. (Остаётся неопределённым вопрос о том, существует ли минимальный квант пространства и времени.)
Ахиллес и черепаха
Остаётся только удивляться наивности таких авторов (Поль Леви, наверное, выразился бы в данном случае грубей). Хотя не исключено, что у них тонкий квантовый юмор.
Зенон предложил именно апории, которые заводят мысль в тупик и не могут иметь рационального решения. Они призваны показать, помимо всего прочего, трудности познания реального мира посредством математических упражнений.
По словам Бертрана Рассела: «Анализу апорий Зенона посвящена колоссальная литература; особенно большое внимание им уделялось в последние сто лет, когда математики стали усматривать в них предвосхищение парадоксов современной теории множеств».
На практике Ахиллес при желании перегонит черепаху, которая находится в пределах досягаемости. Но при некоторых условиях ему это не удастся. Почему?
Ответ прост: Ахиллес поставлен в такие условия, при которых он не догонит черепаху. Ему предложено постоянно замедлять своё движение, а с уменьшением расстояния становиться всё тоньше и меньше, до ничтожных размеров. Так получается, если отрешиться от математических абстракций и представить себе реальную картину бега.
Чтобы показать важность корректной постановки задачи, можно предложить апорию «Ахиллес и Гермес».