А ну-ка, догадайся!
Шрифт:
Теперь уже нетрудно понять, на чем основан трюк с датами рождений. Пусть N — некоторое многозначное число. Переставив его цифры, мы получим новое число N'. Ясно, что N и N' имеют одинаковые цифровые корни. Следовательно, если мы вычтем один цифровой корень из другого, то разность будет равна 0, или 9, что то же в арифметике вычетов по модулю 9. Итак, число 0, или 9,— цифровой корень разности чисел N и N'. Следовательно, какое число мы бы ни взяли, переставив цифры и вычтя из большего числа меньшее, мы всегда получим разность с цифровым корнем, равным 0 (или 9).
Из способа вычисления цифровых корней видно, что окончательный результат, равный 0, получится только в том случае,
Следовательно, демонстрируя трюк с вездесущей девяткой в датах рождения, необходимо следить за тем, чтобы при перестановках цифр возникали различные числа. Если числа N и N' не совпадают, то цифровой корень их разности равен 9.
Многие фокусы построены на вездесущей девятке. Например, попросите кого-нибудь из ваши друзей записать в тайне от вас (чтобы не видеть, вы можете повернуться спиной) номер денежной купюры, затем как угодно переставить цифры, вычесть из большего числа меньшее и, вычеркнув в полученной разности любую отличную от нуля цифру, назвать вразбивку в произвольном порядке остальные цифры. Даже не взглянув на полученный результат, вы без труда назовете зачеркнутую цифру!
Секрет фокуса очевиден. Разность имеет цифровой корень, равный 9. Когда ваш приятель называет одну за другой цифры, вы складываете их в уме, беря каждый раз лишь вычеты (остатки) по модулю 9. После того как будет названа последняя цифра, вы вычитаете полученный вами результат из 9 и узнаете, какая цифра была зачеркнута. (Если полученный вами результат равен 9, то была зачеркнут цифра 9.)
И трюк с датой рождения, и фокус с номером денежной купюры служат великолепным введением в арифметику вычетов, или, что то же, теорию сравнений.
В этом автобусе 40 юношей. Скоро они отправятся в спортивный лагерь «Окифиноки».
В этом автобусе 40 девушек. Они едут в тот же лагерь.
Перед тем как отправиться в рейс, водители автобусов зашли выпить по чашечке кофе.
< image l:href="#"/>Тем временем 10 юношей вышли из своего автобуса и пересели в автобус к девушкам.
Водитель автобуса, в котором ехали девушки, вернувшись, заметил, что пассажиров стало слишком много.
Водитель. Хватит валять дурака! В этом автобусе 40 мест, поэтому десяти из вас придется выйти. И, пожалуйста, поживее!
Десять пассажиров (юношей и девушек) вышли из автобуса и расположились на свободных местах того автобуса,
По дороге водитель того автобуса, в котором сначала были только девушки, принялся размышлять.
Водитель. …В моем автобусе осталось несколько ребят, а в другой автобус пересело несколько девушек. Интересно, кого больше: ребят в моем автобусе или девушек в другом автобусе?
Трудно поверить, но независимо от того, сколько парней и девушек было среди тех десяти пассажиров, которым пришлось пересесть в другой автобус, девушек в автобусе для юношей столько же, сколько юношей в автобусе для девушек.
Почему? Предположим, что в автобусе для девушек осталось 4 юноши. Тогда их места в автобусе для юношей должны занять 4 девушки. То же рассуждение применимо и к любому другому числу юношей, оставшихся в другом автобусе.
Парадоксальную на первый взгляд ситуацию с числом посторонних, проникших «не в тот автобус», легко продемонстрировать с помощью колоды игральных карт. Разделите колоду на 2 равные стопки.
В одну стопку отложите 26 черных карт (трефовой и пиковой масти), в другую — 26 красных карт (бубновой и червовой масти). Сняв часть любой из двух стопок (например, 13 красных карт), переложите ее на черную стопку и тщательно перетасуйте 39 карт в образовавшейся «толстой» стопке. Затем, отсчитав из нее наугад 23 карты, верните их в красную стопку и тщательно перетасуйте образовавшуюся половину колоды.
Разложив каждую из стопок вверх лицом — вниз рубашкой, вы обнаружите, что число черных карт в красной стопке совпадает с числом красных карт в черной стопке. Доказывается это удивительное совпадение так же, как совпадение числа юношей в автобусе для девушек с числом девушек в автобусе для юношей.
На том же принципе основаны и многие другие карточные фокусы. Приведем один из них, принцип которого человеку непосвященному отгадать не так-то просто. Разделите колоду карт пополам и сложите снова так, чтобы ровно половина карт была обращена вверх лицом и ровно половина — вверх рубашкой. Перетасовав карты, покажите подготовленную таким образом колоду зрителям, не говоря им о том, что ровно 26 карт обращено вверх лицом. Попросите кого-нибудь из них, тщательно перетасовав карты, отсчитать вам 26 из них.
Затем, обращаясь к зрителям, вы произносите:
— Странно, но в моей половине колоды вверх лицом обращено столько же карт, сколько в той половине, которая находится в руках у вас!
После этого вы просите вашего ассистента из зрителей разложить те карты, которые он держит, на столе. Пока он раскладывает карты, вы, перед тем как раскладывать карты, сами незаметно переворачиваете свою половину колоды. Как показывает подсчет, карт, лежащих вверх лицом, в обоих половинах колоды оказывается поровну! Этот фокус основан на том же принципе, что и парадокс с автобусами. Если бы незаметно для зрителя вы не перевернули свою половину колоды, то число карт, лежащих лицом вверх, в другой ее половине было бы равно числу карт, лежащих вверх рубашкой в вашей половине колоды. Когда вы переворачиваете свою половину колоды, те карты, которые лежали вниз лицом, обращаются лицом вверх и оказываются во взаимно-однозначном соответствии с картами, лежащими лицом вверх в другой половине колоды.