Чтение онлайн

на главную - закладки

Жанры

А ну-ка, догадайся!

Гарднер Мартин

Шрифт:

После трех продаж он получил за картину 110 долларов. Если чистую прибыль определить как разность между суммой денег, вырученной от продажи картины, и стоимостью израсходованных материалов, то чистая прибыль составит 90 долларов.

Поскольку нам не известно, сколько художник уплатил за материалы (мы лишь предположили, что за подрамник, холст и краски он уплатил 20 долларов), вычислить прибыль невозможно. Эта задача лишь кажется арифметической; в действительности же здесь все упирается в вопрос, что понимать под реальной прибылью. Аналогичный парадокс возникает в связи со старым вопросом о том, раздается ли какой-нибудь звук при падении дерева в глухом лесу, если поблизости нет ушей, чтобы его слышать. Ответ на вопрос может быть и утвердительным, и отрицательным в зависимости от того, что понимать под словом «звук».

Два парадокса, которыми открывается глава 3 («Геометрия»),

могут служить новыми, не менее занимательными примерами проблем, возникающих в связи с различными толкованиями одного слова.

Демографический взрыв

Кому из нас не приходилось слышать о том, как быстро увеличивается численность населения земного шара?

Президент Лиги борцов против контроля за рождаемостью мистер Нинни не согласен с общим мнением. Он считает, что численность населения земного шара убывает и что вскоре у каждого будет больше пространства, чем нужно.

Рассуждает мистер Нинни следующим образом.

М-р Нинни. У каждого из нас двое родителей. Но у каждого из родителей также по двое родителей, поэтому у нас по две бабушки и по два дедушки, по четыре прабабушки и по четыре прадедушки. С каждым поколением в глубь истории число предков у каждого из нас удваивается.

M-p Hинни. Если вы вернетесь вспять на 20 поколений в эпоху средневековья, то насчитаете 1048 576 предков! И столько же предков у каждого из ныне живущих людей. Следовательно, численность населения земного шара стала в миллион раз больше, чем теперь!

Мистер Нинни, несомненно, заблуждается. Но где ошибка в его рассуждениях?

Рассуждения Нинни правильны, если принять следующие два предположения:

1) на генеалогическом дереве каждого ныне живущего человека ни один предок не появляется более одного раза;

2) ни один человек в прошлом и настоящем не фигурирует более чем на одном генеалогическом дереве.

Ни одно из этих предположений не выполняется во всех, без исключения, случаях. Если у некой супружеской четы пятеро детей и у каждого из детей по пять детей, то наша супружеская чета будет прародителями (бабушкой и дедушкой) на 25 генеалогических деревьях. Кроме того, на любом дереве, если вернуться назад на достаточно большое число поколений, ветви будут пересекаться из-за браков между дальними родственниками.

В своих рассуждениях Нинни (и в этом состоит его ошибка) не учитывает ни того, что одни и те же люди могут фигурировать в различных генеалогических деревьях, ни того, что множества предков каждого из ныне живущих людей имеют массивное пересечение. «В демографическом взрыве», о котором толкует Нинни, миллионы людей сосчитаны миллионы раз!

Многие с удивлением узнают, как быстро возрастают члены последовательности, у которой каждый следующий член вдвое больше предыдущего. Если один человек вздумает уплатить другому в первый день 1 доллар, во второй — 2 доллара, в третий — 4 доллара и т. д., то, как ни трудно в это поверить, на двадцатый день размер выплаты составит более миллиона долларов!

Можно ли быстро сосчитать сумму первых двадцати членов последовательности, в которой каждый следующий член вдвое больше предыдущего? Оказывается можно: для этого достаточно удвоить последний (двадцатый) член и вычесть из полученного результата единицу. В нашем, случае 20-й член равен 1048576, а сумма

первых 20 членов равна

(2 х 1048576) — 1 = 2097151.

Этот трюк применим к любой частичной сумме последовательностей, каждый член которой (начиная со второго) вдвое больше предыдущего. Существует весьма простое доказательство того, что это правило работает без «осечек». Предоставляем нашим читателям самостоятельно найти это доказательство.

Вездесущая девятка

У числа 9 немало загадочных свойств. Знаете ли бы, например, что оно незримо присутствует в дате рождения любой знаменитости?

Взять хотя бы Джорджа Вашингтона. Он родился 22 февраля 1732 г. Запишем дату его рождения как одно число: 2221732, переставим цифры в любом порядке и из большего числа вычтем меньшее.

Сложив все цифры разности, мы получим 36; а 3 плюс 6 равно 9!

Проделайте то же самое с датами рождения Джона Кеннеди (29 мая 1917 г.), Шарля де Голля (22 ноября 1890 г.) или любой другой знаменитости, и вы всегда получите 9. Существует ли некая таинственная связь между девяткой и датами рождения знаменитостей?

Скрыта ли девятка в дате вашего рождения?

Сложим цифры любого числа, затем цифры получившейся суммы и будем продолжать эту операцию до тех пор, пока не получится однозначная сумма, которая называется цифровым корнем исходного числа. Цифровой корень числа равен остатку от деления его на 9, поэтому описанную выше процедуру иногда называют «вычеркиванием девяток». (Подробнее о цифровых корнях см. мою статью «Цифровые корни».) [7]

Цифровой корень вычисляется особенно быстро, если вычеркивание девяток производить непосредственно в процессе сложения цифр. Например, если первые две цифры числа равны соответственно 6 и 8, то их сумма равна 14. Сумма цифр этой суммы равна 1 +4 = 5, поэтому мы можем сразу же вычеркнуть, или отбросить, девятку и запомнить только 5. Иначе говоря, всякий раз, когда частичная сумма ставится двузначной, следует заменять ее суммой цифр.

7

См. сноску на с. 44, с. 178–185.

Последняя однозначная сумма и будет цифровом корнем исходного числа. Математики сказали бы, что цифровой корень сравним с исходным числом по модулю 9. Так как остаток от деления числа 9 на 9 равен 0, то в арифметике вычетов (остатков) по модулю 9 числа 9 и 0 эквивалентны.

До появления вычислительных машин арифметику вычетов по модулю 9 часто использовали для проверки сложения, вычитания, умножения и деления больших чисел. Пусть, например, мы вычитаем из числа А число В и находим разность С. Наши вычисления можно проверить: взять цифровой корень числа А, вычесть из него цифровой корень числа В и сравнить полученный результат с цифровым корнем разности С. Если вычисления произведены правильно, разность цифровых корней должна совпадать с цифровым корнем разности. Совпадение цифровых корней еще не говорит о правильности результата, но зато, если цифровые корни не совпадают, мы можем с уверенностью утверждать, что где-то в вычислениях допущена ошибка. Совпадение же цифровых корней лишь придает большую правдоподобность правильности вычислений. Аналогичным образом проверяются с помощью цифровых корней результаты выполнения сложения, умножения и деления.

Поделиться:
Популярные книги

На распутье

Кронос Александр
2. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На распутье

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Гром над Академией Часть 3

Машуков Тимур
4. Гром над миром
Фантастика:
фэнтези
5.25
рейтинг книги
Гром над Академией Часть 3

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Проданная невеста

Wolf Lita
Любовные романы:
любовно-фантастические романы
5.80
рейтинг книги
Проданная невеста

Лорд Системы

Токсик Саша
1. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
4.00
рейтинг книги
Лорд Системы

Вторая жизнь майора. Цикл

Сухинин Владимир Александрович
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Вторая жизнь майора. Цикл

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Имя нам Легион. Том 4

Дорничев Дмитрий
4. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 4

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Наследница Драконов

Суббота Светлана
2. Наследница Драконов
Любовные романы:
современные любовные романы
любовно-фантастические романы
6.81
рейтинг книги
Наследница Драконов

Вечный. Книга III

Рокотов Алексей
3. Вечный
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга III

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии