Алексей Васильевич Шубников (1887—1970)
Шрифт:
По вопросу о возникновении вицинальных граней существуют и другие гипотезы [46], например гипотеза о рациональности вициналей,. предложенная Шустером. Эта гипотеза не позволяет предсказать появление вициналей в зависимости от условий роста. Гипотеза Е. С. Федорова базируется на существовании в растворе двумерных пленок, образующих вицинальные грани. Эта гипотеза, однако, не дает ответа на вопрос о том, почему в случае алюмокалиевых квасцов вицинальные грани образуются только на грани октаэдра. Гипотеза «скучивания» М. В. Ерофеева и А. Н. Карножицкого предполагает двойниковое срастание и прорастание нескольких кристаллов под очень малыми углами друг к другу. Однако в этом случае кристалл должен состоять из участков, отличающихся друг от друга углами поворота. Гипотеза непараллельного расположения молекул в узлах кристаллической решетки также не в состоянии объяснить, почему такая непараллельность
Рис. 8. Зависимость угла между вицинальными гранями и степенью пересыщения раствора.
Примеси и механические частицы оказывают существенное влияние не только на процесс роста, но и на процесс зарождения кристаллов. Об этом свидетельствуют данные, полученные А. В. Шубниковым совместно с В. Ф. Парвовым при кристаллизации хлористого аммония из раствора под действием электрического поля [257]. При этом интенсивно возникают новые центры кристаллизации. Было замечено, однако, что во влажной атмосфере этот эффект исчезает. Причина явления, видимо, заключается в том, что под действием электрического поля из атмосферы в раствор попадают возбуждающие кристаллизацию твердые частицы хлористого аммония. Если атмосфера влажная, то адсорбция влаги на частицах хлористого аммония приводит к их растворению.
Сила, действующая на частицу, f = qE (здесь q — заряд частицы; Е — напряженность поля в точке, где находится частица) направлена вдоль соответствующей силовой линии в сторону возрастания напряженности. Эта сила возникает из-за неодинакового распределения индуцированных зарядов на противоположных сторонах частицы.
Форма роста кристаллов является основным морфологическим признаком, позволяющим установить условия их образования [225]. Нормальная скорость роста из расплава грани может быть представлена в виде:
Vi = ai(Тi– Тk),
где Ti — температура равновесия между средой и гранью i-й простой формы; Тk — температура среды у поверхности кристалла; ai — постоянная.
Если для исследуемого кристалла все величины ai, Ti известны, то по ним может быть построена зависимость скорости роста от температуры Тk и воспроизведена форма кристалла для любой температуры Тk.
Предположим, что теплообмен между кристаллом и средой осуществляется путем молекулярной теплопроводности и тетрагональный кристалл имеет только грани призмы {100} и базиса {001}. Если скорость роста граней базиса v1 больше скорости роста граней призмы v2, то кристалл будет иметь столбчатый габитус. При обратном соотношении скоростей — пластинчатый.
Также предположим, что v1>v2, тогда прямая v1 = а1(Т1—Тk) лежит выше кривой v2 = а2(Т2—Тk), как показано на рис. 9.
Если кристалл возник при значительном переохлаждении расплава (Tk<T), то форма кристалла будет определена из соотношения:
x/z = v1/v2,
где х — ширина кристалла по оси Х; z — его высота по оси Z +(001).
Вследствие выделения скрытой теплоты температура кристалла повысится до Т"k. При Т"k, близкой к Т2, отношение v1/v2 может стать очень
Рис. 9. Зависимость нормальных скоростей v1 и v2 граней базиса и призмы тетрагонального столбчатого кристалла от температуры Т.
Форма шара, покрытого маленькими гранями, имеющими наименьшее из возможных значений удельной поверхности энергии, в энергетическом отношении является более выгодной, чем многогранная. Расщепление сферолита происходит по плоскости спайности, а образован он плоскостями, обладающими наибольшей удельной поверхностной энергией.
Для сферолита, сплошь покрытого гранями {001}, при равенстве объемов кристалла Vk и сферолита Vs имеют место следующие соотношения:
где g — поверхность сферолита; R — его радиус.
где Е'g — поверхностная энергия сферолита.
Для сферолита, сплошь покрытого гранями {100},
где Е"g поверхностная энергия сферолита, образованного из пластинчатого кристалла.
При Е"g = Ek
и окончательно:
Анализ полученных выражений свидетельствует о том, что при Е'g > Ek более выгодна столбчатая форма кристаллов, а при Е'g < Ek — сферолит, Аналогично и для пластинчатой формы: при Е"g > Ek более устойчива пластинчатая форма, а при Е"g < Ek — сферолит.
Сферолит может возникать в вязкой переохлажденной жидкости из многих кристаллических зародышей, сосредоточенных в одной «точке», либо из одного монокристального зародыша путем его расщепления [226]. В первом случае образование сферолита обусловлено чисто геометрической причиной: возможностью для каждого зародыша расти только в одном направлении — по радиусам из определенной «точки». Между растущими кристаллами возникает «борьба за существование», в результате которой «выживают» лишь те из них, которые по закону геометрического отбора ориентированы направлениями наибольших радиальных скоростей.
Если сферолит образуется из столбчатого или игольчатого кристаллика, то расщепление кристалла сопровождается образованием двулистника (рис. 10). Последний может состоять либо из вытянутых листков, либо круглых глазков, либо из двух спиральных завитков.
Рис. 10. Пояснение закона образования двулистника с круглыми «глазками».
Кривая двулистника с круглыми глазками диаметром а описывается следующим выражением:
= sin , d = 2d.