Арсенал-Коллекция 2013 № 09 (15)
Шрифт:
Корабль прибыл на место назначения 22 сентября и встал на якорь в узком проходе между островками Лахо и Манглет к западу от бухты Корон, Именно тут утром 24 сентября 1944 г. корабль атаковали свыше тридцати самолётов 38-го оперативного соединения, отлавливавшего корабли, ушедшие из Манильской бухты. Около 09.05 в атаку на «Акицусима» и находившийся к северу от неё танкер «Окикава-мару» пошли истребители «Хэллкет» из 31-й истребительной эскадрильи [19 Командир - капитан 3-го ранга Д. Дж. Уоллес, который также командовал авиагруппой корабля.] с авианосца «Кэбот» (CVL28 «Cabot»). Несмотря на достаточно плотный зенитный огонь, лётчики смогли дважды поразить «Акицусима» в центральную часть. Попадание вызвало серьёзнейший пожар, а через пробоины стала поступать вода - к 09.15 корабль уже имел сильный крен на правый борт.
Около 09.15
Корабль был исключён из списков флота 10 ноября 1944 г. Останки корабля неплохо сохранились и по сей день являются одним из популярных мест для посещения любителями подводного плавания.
Николай КОЛЯДКО
Но разведка доложила точно: «61-см торпеда обр. 93»
Одним из самых неприятных сюрпризов, приготовленных японцами своим будущим противникам по Тихоокеанской войне, стала «61-см торпеда обр. 93», получившая впоследствии - с лёгкой руки американского историка Самуэля Морисона - прозвище «Длинное копьё» (Long Lance). История создания этого оружия больше всего напоминает шутку, приписываемую А. Эйнштейну: «Все с детства знают, что то-то и то-то невозможно. Но всегда находится невежда, который этого не знает. Он-то и делает открытие». А ещё это история о том, к чему приводит недооценка противника, помноженная к тому же на чванство «белых людей».
Торпеды, как и самолёты, строятся вокруг двигателя. Наиболее распространённым типом корабельных торпед времён Второй Мировой были парогазовые, или wetheater в англоязычной терминологии. Принцип работы их двигателей упрощённо можно описать следующим образом: углеводородное горючее (керосин, спирт и т. д.), окислитель (по понятным причинам использовать кислород из атмосферы невозможно) и рабочее тело (вода) подаются в камеру сгорания/газогенератор; получившийся водяной пар вместе с продуктами сгорания поступает в цилиндры паровой машины (или на лопатки паровой турбины), приводящей в движение гребные винты. Главный недостаток заключался в том, что значительную часть объёма торпеды приходится отводить под окислитель - плотность даже сильно сжатого газа намного меньше, чем у жидкостей.
Использовать в качестве окислителя кислород гораздо эффективней, чем воздух, состоящий на 78% из азота, который никак не участвует в процессе сгорания топлива и является мёртвым грузом. Таким образом, переход на кислород автоматически обеспечивает значительное увеличение скорости и дальности хода, а также позволяет увеличить размер боевой части - при тех же общей массе и габаритах. Тем более, что теоретически парогазовый двигатель может работать на любом окислителе. Но только теоретически - дьявол, как известно, скрывается в деталях. Сам по себе кислород не горит и не взрывается, однако в кислородной атмосфере температура воспламенения - часто с последующей детонацией - многих других веществ стремительно падает, со всеми вытекающими последствиями. Возможно, вы слышали истории про масло, попавшее на редуктор кислородного баллона. Именно с подобными проблемами столкнулись инженеры в США, Великобритании, Италии - словом везде, где в начале 1920-х годов пытались экспериментировать с кислородом в качестве окислителя.
Японцы тоже экспериментировали с кислородными торпедами, но около 1924 г., после ряда взрывов и пожаров, это направление - как и везде - было признано бесперспективным и закрыто. Эта история могла закончиться тогда же, если бы в 1927 г. Императорский флот Японии не направил в Великобританию, на «Whitehead Torpedo Works», делегацию из восьми специалистов во главе с капитан-лейтенант-инженером (впоследствии контр-адмиралом) Сидзуо Ояги для ознакомления с новыми британскими торпедами - с целью выбора моделей для закупки. Что произошло далее - в деталях неизвестно. По одной из версий, во время посещения линкора «Нельсон» японцы заметили в торпедной компрессорной корабля кислородное оборудование, а может, до них просто дошли какие-то слухи. Так или иначе, в 1928 г. в Японию ушёл обстоятельный доклад о том, что британцы испытывают и планируют принять на вооружение 24" (610-мм) кислородные торпеды.
Истина, как обычно, лежала где-то посередине. Британцы действительно разработали и приняли на вооружение 24,5” (622-мм) торпеды Mark I, и они действительно экспериментировали с парогазовыми двигателями на кислороде (точнее, на обогащённом кислородом сжатом воздухе), которые они планировали применять как на 24,5", так и на 21" (533-мм) торпедах Mark VII. Однако в результате они отказались даже от обогащённого воздуха (более того, вскоре они отказались и от самих парогазовых двигателей), а 24,5" торпедами были вооружены лишь два линкора типа «Нельсон». Именно такими торпедами была произведена впоследствии единственная в истории результативная торпедная атака одного линейного корабля другим - знаменитый бой с «Бисмарком» 27 мая 1941 г. (предполагается, что одна из торпед линкора «Родней» попала-таки в цель).
Но вернёмся к нашим японцам. Получив информацию о том, что проблемы с кислородом были британцами каким-то образом решены, соответствующий японский проект получил новое дыхание, и в конце того же 1928 г. в лабораториях арсенала ВМФ в Куре закипела работа. Теперь японцы хотя бы были уверены, что проблема в принципе решаема, оставалось «всего лишь» найти это решение - и они его нашли. Японские инженеры не пытались изобретать велосипед, за основу был взят стандартный парогазовый двигатель Уайтхеда, который они и доводили для безопасного использования окислителя из чистого кислорода. Началась упорная борьба с теми самыми деталями, в которых «скрывается дьявол».
Погрузка 24,5" торпеды Mark I на борт линкора «Нельсон»
Эти же торпеды в одном из торпедных отсеков линкора «Родней»
610-мм торпедные аппараты эсминца «Сирануи»
Конструкторы из Куре перекомпоновали двигательный отсек торпеды, чтобы избавиться от изгибов малого радиуса в магистралях подачи окислителя с тем, чтобы в этих изгибах не могли скопиться посторонние вещества. Была также отработана технология полировки внутренних поверхностей магистралей, клапанов и редукторов - с той же целью. Поскольку большинство возгораний и взрывов приходилось на момент запуска двигателя - была добавлена система запуска на сжатом воздухе, лишь затем постепенно замещавшемся кислородом. Была разработана методика промывки, продувки и затем герметизации магистралей окислителя перед заправкой кислородного танка. И так далее...
На первый взгляд, все эти доработки выглядят достаточно мелкими и очевидными, но в реальности это заняло более четырёх лет упорной работы и экспериментов - к 1930 г. удалось освоить обогащённый до 50% кислорода сжатый воздух, и лишь в 1933 г. были созданы первые стабильно работающие прототипы на почти чистом (98%) кислороде. Затем последовали их многочисленные испытания и доводка, плюс разработка торпедных аппаратов под новое оружие (предыдущие модели японских 610-мм торпед были на полметра короче и заметно легче); кроме того, возросшие скорость и дальность требовали серьёзного улучшения систем управления, прежде всего гироскопов. Наконец, 28 ноября 1935 г. новая торпеда была принята на вооружение под обозначением «кусан сики гёрай» (торпеда обр. 93 [1933] года). То, насколько радикально новые японские торпеды (а также их 533-мм «младшие сестрички» обр. 95, созданные на их базе для вооружения подводных лодок) превосходили по всем показателям имевшееся у потенциальных противников по Тихоокеанской войне.