Чтение онлайн

на главную

Жанры

Азбука рисунков природы
Шрифт:

А теперь остановимся на двух примерах, показывающих развитие таких рисунков. Представим прямоугольный массив с однородным изотропным потенциальным полем Е < Р. Зададим границы структурными элементами лишь разгружающими массив (без концентрации у кромки). Искусственно зададим в центре прямоугольника микронеоднородность, в которой появится одиночный элемент, в вершинах которого происходит высокая концентрация потенциала (такие элементы могут двигаться даже при условии Е < Р). Примем, что элементы не могут подходить один к другому и при встрече вершин стремятся разойтись. Это, например, может произойти, если элемент непосредственно возле своей вершины концентрирует потенциал, а на удалении разгружает его. Можно обеспечить это также тем, что потенциал вокруг вершины частично разгружается, а движется она за счет снижения «прочности» в вершине. При таких условиях сформируется структура, подобная изображенной на рис. 110. При ее разрастании постоянно возникает ситуация конкуренции, опережающее развитие одного элемента сдерживает другой, встречный.

Рассмотрим ситуацию, при которой конкуренция выражена в еще большей степени. Зададим на одной из сторон прямоугольника несколько глубоких затравочных

неоднородностей, в которых возникнут элементы. Примем, что в пределах всего массива Е < Р, но поле неоднородно, у стороны с неоднородностями величина потенциала наименьшая. Остальные условия примем такими, как и в предыдущем примере. В этом случае возникшие здесь элементы будут стремиться к противоположной стороне. Причем чем дальше они продвинутся, тем выше будет скорость их движения, так как величина потенциала в этом направлении возрастает. В такой ситуации элемент, «вырвавшийся» вперед, для остальных недосягаем (рис. 111).

Если в этом же массиве поместить неоднородность в центре, то все элементы, зародившиеся в этой точке, будут стремиться развернуться в сторону максимального потенциала. При этом те из них, которые первоначально были ориентированы в этом направлении, для других недосягаемы (рис. 112).

Рис. 110

Рис. 111

Рис. 112

Рис. 113

Если потенциальный рельеф имеет вид конуса, то элементы, зарождающиеся на его вершине и появляющиеся при ветвлении, будут стремиться развернуться к центру (рис. 113). Если бы в последних примерах в потенциальном рельефе был задан гребень, то на нем бы образовалась доминирующая ветвь (ствол) структуры. А теперь представим, что во всех этих примерах с ветвлением появление на главной ветви бокового притока тут же исключает появление в этом месте притока с противоположной стороны. Облик рисунков не изменится, но притоки с разных сторон на главных ветвях будут расположены в противофазе. Подчеркнем, что для образования сильно разветвленных структур необходимо, чтобы элементы могли «вырваться вперед» и захватить обширное поле ресурсов. В условиях внешне заданной смещающейся границы структурообразования элементы не могут за нее выйти, и сформируется множество тощих мало разветвленных ветвей.

Рис. 114

Рис. 115

Рис. 116

Теперь рассмотрим еще один вариант создания рисунка. Зададим, что потенциал — скаляр, а в вершине элемента происходит сильная его концентрация. Движется вершина в сторону больших значений потенциальной функции и позади себя на ширину l полностью разгружает потенциал.

Подобные примеры мы рассматривали ранее, но там элементы возникали в точке Е = Р. Здесь же мы будем первичное положение элемента задавать сами, не дожидаясь, пока Е достигнет Р, и соответственно можем контролировать число элементов. Ограничимся пока одним элементом, причем примем, что движется лишь один его конец. Зададим, что вершина элемента не обладает инерцией (легко разворачивается) и движется даже при малых значениях потенциала. Останавливается она лишь тогда, когда в ее окружении везде Е = 0, т. е. мы приняли очень высокую концентрацию потенциала в вершине элемента. Структуры, возникающие в этих условиях, показаны на рис. 114—119. На рис. 120, 121 показаны структуры, возникающие при одновременном появлении двух точек. На этих рисунках мы видим, как элементы, полностью разгрузив потенциал в доступном пространстве, останавливаются. Теперь зададим, что на линии потенциал разгружен полностью, а при удалении от него степень разгрузки линейно снижается и на расстоянии l потенциал совсем не разгружен. В этом случае между двумя параллельными следами всегда будет оставаться гребень ненулевых значений потенциала, и элемент будет иметь возможность выйти из тупика по этому гребню. Дальнейшее развитие некоторых из только что рассмотренных структур до стадии появления элементов третьей генерации показано на рис. 122, 123.

Рис. 117

Рис. 118

Рис. 119

Рис. 120

Рис. 121

Рис. 122

Рис. 123

Вариантов пороговой и потенциальной функций и их разгрузки можно задать неограниченно много, соответственно и многообразие рисунков бесконечно.

Мы рассмотрели и показали лишь простейшие, элементарные рисунки, составленные из линейных элементов, — задавались фиксированная ширина зоны разгрузки и линейное распределение ее величины. Но возможны и другие варианты. Например, можно задавать, что ширина зоны разгрузки зависит от длины элементов или от значений потенциала в этой точке. От длины элемента может зависеть и степень концентрации потенциала в его вершине. Величины разгрузки соседних элементов могут быть взаимосвязаны, например, могут суммироваться. Ширина зоны разгрузки с одной стороны элемента может отличаться от разгрузки с другой. Появление бокового притока может стимулировать его появление с противоположной стороны, а может и наоборот — исключить. Потенциальный рельеф по мере своего воздымания может изменять свою общую первоначальную конфигурацию. Со временем может измениться и направление главной составляющей потенциала. Все эти варианты мы рассматривать не будем. Оставим для самостоятельного изучения и задачу о развитии в одном пространстве взаимосвязанных линейных элементов разной природы. При желании читатель, наверно, и сам сможет конструировать соответствующие этим условиям абстрактные структуры. Сейчас же вернемся к конкретным рисункам.

Паутины трещин

Этот раздел посвящен структурам разрывного типа. Поверхностные трещины в непосредственной близости от себя полностью разгружают напряжения в направлении, перпендикулярном трещине, а в параллельном направлении — лишь частично. В первом приближении при упругом поведении среды степень разгрузки в этом направлении можно охарактеризовать величиной коэффициента Пуассона. Если растягивать брусок, то одновременно с этим он становится тоньше. Коэффициент Пуассона показывает отношение этих деформаций. Теоретически он не может превышать 0,5. Это значит, что разгрузка напряжений возле трещины в направлении, параллельном ей, не может превышать 50% от первоначальных напряжений. Разброс этой величины у разных материалов относительно небольшой, обычные значения — 0,25—0,35. Минимальные значения у кварцевого стекла — 0,17, а значения, близкие 0,5, наблюдаются у гелей (это, например, обычный студень или желе). Гель — жидкость, запечатанная в тонкий упругий каркас. А жидкость объемно несжимаема, поэтому коэффициент Пуассона у гелей почти 0,5. Шкала узкая — 0,17—0,5. Но эти различия для рисунка структуры могут быть важными. При микронеоднородности среды трещина неровная, на ее берегах возникают локальные участки концентрации напряжений. В этом случае при малом значении коэффициента Пуассона у берега трещины в перпендикулярном ей направлении напряжения почти не разгружены, и за счет концентрации напряжений на сколах трещины от нее могут отходить боковые притоки, т. е. возможен вариант ветвящейся структуры. Если же этот коэффициент близок к 0,5, то трещины будут редко подходить одна к другой и полосы между параллельных трещин будут разбиваться поперечными только при сильном дополнительном наращивании напряжений. В итоге могут возникнуть структуры, близкие к рассмотренным выше идеализированным структурам, у которых элемент вблизи себя разгружает потенциал во всех направлениях — вплоть до спиралей (см. рис. 94—100).

На материалах со средними значениями коэффициента Пуассона возможно и то, и другое. Но обычно боковые притоки отходят от трещин лишь на их крутых поворотах, а трещины, заходящие в зону разгрузки другой трещины, часто вязнут и не доходят до нее. Это главные особенности взаимоотношения трещин отрыва. И еще — одна трещина не может пересечь другую.

Анализ абстрактных рисунков мы начали с рисунков, появившихся в резко анизотропном поле. Примером развития рисунка трещин усыхания в таком поле может быть обычная сырая доска, лежащая под лучами жаркого солнца. На ней из-за резкой анизотропности прочностных свойств будут развиваться только продольные трещины. Если ту же доску бросить в костер и дать ей обуглиться, то на поверхности угля мы можем увидеть тетрагональные сетки трещин, соответствующие схеме, изображенной на рис. 71, 72, а схемы рис. 78—80 можно наблюдать на срезе бревна. То есть степень анизотропности древесного угля меньше, чем продольного среза дерева. Такие же рисунки, как на схемах 71, 72, мы можем увидеть и на комбинированных средах (доска, покрытая слоем старой масляной краски). Здесь анизотропность доски задает направление генеральных трещин на краске, они идут вдоль волокон дерева. Но если мы будем рассматривать трещины на узких окрашенных деревянных брусках, то здесь генеральные трещины будут идти поперек древесных волокон, потому что грани бруска разгружают поперечные растягивающие напряжения. Если брусок пошире, то у краев трещины будут его пересекать, а ближе к центру пойдут вдоль (рис. 124), как на реальном рисунке (балконная дверь).

А теперь попытаемся промоделировать развитие рисунка в изотропном поле. В этой ситуации трещина движется в сторону больших значений напряжений и, зародившись на вершине потенциального рельефа, она стремится вернуться к ней. Возьмем круглую чашку и нальем в нее однородную пасту мела. При ее высыхании должны появиться напряжения, одинаковые во всех направлениях. Но мы уже проводили этот эксперимент (см. рис. 5—8) и в итоге получили различные рисунки. Если мы полистаем абстрактные разделы азбуки, то найдем подобные рисунки в разделе «Прямоугольные решетки». Это анизотропные условия. И действительно, паста мела лишь кажется изотропной. Когда мы выливали пасту в чашки, то при ее растекании частицы мела неизбежно приобретали упорядоченную ориентировку, в результате свойства массива стали анизотропными. Для того чтобы паста, вылитая в кювету, легла ровным слоем, ее приходится разравнивать. В первом случае пасту немного постукивали о стол (см. рис. 5). При этом массив не приобрел макроанизотропных свойств, но на локальных участках сохранилась анизотропность, полученная при движении пасты во время первоначального растекания. Во втором варианте (см. рис. 6) чашки несколько раз наклоняли из стороны в сторону, в третьем (рис. 7) — их покачивали, проворачивая вокруг оси, а в четвертом — паста разравнивалась за счет легкого постукивания по ее поверхности в центре чашки. Все эти движения запечатлелись в порогово-потенциальном поле и проявились в рисунках. И чем более однородны условия, тем с большей вероятностью проявляется малейшая анизотропность.

Поделиться:
Популярные книги

Лорд Системы 13

Токсик Саша
13. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 13

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Запретный Мир

Каменистый Артем
1. Запретный Мир
Фантастика:
фэнтези
героическая фантастика
8.94
рейтинг книги
Запретный Мир

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

Наследник

Шимохин Дмитрий
1. Старицкий
Приключения:
исторические приключения
5.00
рейтинг книги
Наследник

Великий князь

Кулаков Алексей Иванович
2. Рюрикова кровь
Фантастика:
альтернативная история
8.47
рейтинг книги
Великий князь

Усадьба леди Анны

Ром Полина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Усадьба леди Анны

Черный Маг Императора 4

Герда Александр
4. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 4

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Император поневоле

Распопов Дмитрий Викторович
6. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Император поневоле

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Назад в СССР: 1985 Книга 4

Гаусс Максим
4. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Назад в СССР: 1985 Книга 4

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9