Беседы о жизни
Шрифт:
Для нас с вами это означает окончание победного марша по глади хорошо изученного и окончательно установленного и вступление в сумрачную чащу гипотетического и ненадежного. Именно к этому, сказать по правде, и стремились лукавые авторы, а вся предыдущая часть книги — это своего рода введение в существо задач, на которых, образно говоря, пробуксовывает ныне могучий сверхвездеход современной молекулярной биологии.
Возможно, мы несколько сгустили краски: нельзя, конечно, сказать, что о способе предопределения пространственной
Прежде всего пространственное строение молекул более двух десятков белков установлено чисто экспериментальными средствами — методами рентгеноструктурного анализа. С помощью этих методов удается установить точное пространственное расположение всех атомов молекулы в кристаллической структуре. Слово «удается» очень точно передает ситуацию, если речь идет о рентгеноструктурном анализе белков. Около трех десятков лет лучшие специалисты-рентгеноструктурщики всего мира бились над этой проблемой. Первые попытки рентгенографического анализа строения белка были предприняты при активном участии знаменитого английского кристаллографа Дж. Бернала; как мы уже знаем, именно рентгеноструктурными методами было подтверждено строение полинговских -спирали и -структуры. Однако еще долгое время (хотя как знать? Восемь или девять лет — так ли уж это долго?) полная расшифровка третичной структуры белковой молекулы средствами рентгенографии была невозможной. И лишь в 1959–1960 годах это впервые удалось англичанам М. Перутцу и Дж. Кендрью. Первенцем оказалась молекула миоглобина — белка, запасающего кислород в тканях мышц. И сразу же вслед за ней М. Перутц и Дж. Кендрью установили структуру молекулы гемоглобина, известного красного вещества крови.
Вот и еще один большой триумф молекулярной биологии. Шутка ли: стало известно строение важнейших в физиологическом плане веществ организма, а главное — стало возможным установление пространственного строения белков вообще!
На пятом Международном биохимическом конгрессе, состоявшемся в Москве в 1961 году, одновременно проходили заседания многих тематических симпозиумов; каждому из них был отведен отдельный — и вовсе не маленький — зал. И надо было видеть отчаяние организаторов конгресса, когда почти все делегаты, покинув заседания «своих» симпозиумов, ринулись на доклад М. Перутца!
Почтенные профессора и энергичные ассистенты толпились в проходах, тянулись на цыпочках в дверях, усаживались прямо на полу возле кафедры. А на столе красовалась модель молекулы миоглобина, изображению которой впоследствии было суждено обойти все книги по молекулярной биологии. Однако главный интерес вызывал не миоглобин (расшифровка его структуры к тому времени уже перестала быть последней сенсацией), а модель молекулы гемоглобина. К тому было много причин. Однако, коль уж скоро речь заходит о гемоглобине, невозможно обойтись без краткого отступления.
Если говорить о роли гемоглобина в истории исследования принципов структурной организации белков вообще, само собой напрашивается сравнение с плодовой мушкой-дрозофилой, главным героем генетических исследований на протяжении многих десятилетий, вплоть до сегодняшнего дня. Именно гемоглобин стал тем полигоном, на котором отрабатывались основные теоретические представления и экспериментальные приемы структурных исследований. Именно на гемоглобине Л. Полингом (опять Полинг!) была впервые показана молекулярная природа наследственных болезней. Наконец, число исследованных первичных структур гемоглобинов различных биологических видов ныне перевалило
И в наши дни научный работник, интересующийся проблемами структуры белка, с большим сочувствием читает пророческие строки И. Ильфа и Е. Петрова: «„Пьер и Константин“ (городской парикмахер. — Примеч. авт.), давно уже порывавшийся сделать сообщение на медицинскую тему, заговорил, опасливо оглянувшись:
— Теперь вся сила в гемоглобине.
Сказав это, „Пьер и Константин“ умолк. Замолчали и горожане, каждый по-своему размышляя о таинственных силах гемоглобина».
Более подробное знакомство с гемоглобином начнем с введения понятия о следующем (и пока, кажется, последнем) уровне структурной организации белков — четвертичной структуре. Молекулы многих белков при ближайшем рассмотрении оказались не цельными молекулами, а молекулярными комплексами, образованными несколькими отдельными молекулами (их еще называют субъединицами) одного или нескольких типов. Между частями такого комплекса не существует валентных связей, и он удерживается за счет более слабых сил.
Оказалось, что гемоглобин представляет собой именно такой комплекс, состоящий из четырех валентно не связанных белковых субъединиц двух разных типов — и , причем каждая из них обладает различной аминокислотной последовательностью. Молекула (строго говоря, это слово следовало бы, по крайней мере, взять в кавычки) гемоглобина содержит по две субъединицы каждого типа, образуя как бы неправильный тетраэдр. Каждая из субъединиц, помимо белковой части, содержит также важную небелковую химическую группу — гем. Именно гем (точнее, содержащийся в нем атом железа) обладает свойством обратимого связывания кислорода, что, как известно, и является основной физиологической функцией гемоглобина.
Кстати говоря, точно такую группу содержит и молекула близкого по своей функции миоглобина; ведь вся разница физиологической роли этих двух белков в том, что первый из них является как бы подвижным контейнером, разносящим кислород с кровотоком из легких по всем органам, а второй — контейнером неподвижным, запасающим в мышцах кислород впрок. Миоглобин, исследованный М. Перутцем и Дж. Кендрью, был получен из мышц кита. И понятно почему, ведь образ жизни кита, связанный с длительными погружениями, требует резко повышенного содержания этого белка в мышцах.
Далее, большая близость характера функций, выполняемых в организме обоими белками, позволяла надеяться, что и их пространственное строение окажется сходным. И в самом деле, М. Перутц и Дж. Кендрью установили, что третичные структуры молекулы миоглобина и каждой из субъединиц гемоглобина почти совпадают… Как и следовало ожидать, сказали бы мы в этом месте, развивая начатую мысль, если бы не одно поистине ошеломляющее обстоятельство. Вспомним, что основной принцип рассматриваемого нами этапа передачи генетической информации гласит: «Первичная структура определяет третичную». И с этой точки зрения, казалось бы (опять же только казалось бы!), близкие по третичной структуре белки должны иметь также и сходные первичные структуры. Но при сравнении аминокислотных последовательностей миоглобина и любой из субъединиц — - или -гемоглобина оказывается, что их «тексты» совпадают менее чем на 30 процентов!