Беседы о жизни
Шрифт:
Все это относится, впрочем, лишь к задаче в точной постановке. Практика же квантовомеханических расчетов базируется на различных приближениях: валентная структура и геометрия валентных связей задаются на основании экспериментальных данных, к рассмотрению привлекается лишь часть электронов и т. п. Но даже в такой постановке рекордно большие объекты, доступные расчету, содержат лишь двадцать-тридцать атомов, да и результаты его, как показывает экспериментальная проверка, оказываются довольно ненадежными. Одним словом, нос вытянешь — хвост увязнет: считая точно, удается рассчитать лишь самые маленькие
Итак, полное и бесспорно точное описание поведения белковой молекулы, которое должна была бы дать квантовая механика, получить не удается и вряд ли когда-нибудь удастся — слишком велики вычислительные трудности. Однако означает ли это, что проблема расчета третичной структуры молекулы белка неразрешима вообще и исследователям, работающим над ней, следует переквалифицироваться, например, в управдомы?
Конечно же, нет. И не только потому, что целеустремленность, собранность и всесторонний охват проблем, свойственный настоящему управдому, являются редкостью в среде научных сотрудников. Нет, просто дело в том, что горький опыт теоретиков давным-давно показал: прямой и очевидный способ расчета почему-то чаще всего приводит к уравнениям, которые всякий математик без секунды колебаний определит как полностью безнадежные.
Причины этого проклятья, испокон веку лежащего на теоретиках, до сих пор не выяснены: возможно, природа, которую теоретики пытаются затолкать в тесные рамки своих уравнений, попросту более злонамеренна, чем это представлялось многим авторитетам (известна, например, фраза А. Эйнштейна: «Господь бог изощрен, но не злонамерен»). И именно по своей злонамеренности она лишь позволяет описать себя с помощью уравнений, но не дает никакого шанса на их решение.
Тем не менее наиболее отчаянные из теоретиков не сдаются, а применяют испытанный метод борьбы с изложенными трудностями: если ситуация в данном конкретном случае складывается так, что результаты теоретического расчета жизненно необходимы (нужно задувать домну, создавать самолет с изменяющейся геометрией крыла, пускать атомный реактор, рассчитывать третичную структуру белка — мало ли что еще), следует прибегнуть к приближенным методам.
Существуют, однако, два типа приближенных методов: приближенные методы вычисления (в том числе и приближенные методы решения уравнений) и методы приближенного описания системы. Первые представляют собой, по существу, лишь те или иные — порой весьма элегантные и остроумные — способы вычисления значения нужной величины со сколь угодной заданной наперед точностью. При этом для приближенных методов вычисления никакого значения не имеет физическая модель, положенная в основу описания рассматриваемой системы: применяя их, скажем, к уравнениям для расчета орбиты спутников, можно вычислять параметры орбиты с точностью до десятых долей сантиметра (так называемых миллиметров), хотя исходные предположения, использованные для вывода этих уравнений, могут гарантировать точность лишь в десятки метров.
Именно в исходных предположениях и кроется суть второго типа приближенных методов: ясно ведь, что расчетные характеристики орбиты спутника будут совершенно иными, если предположить, например, что Земля имеет форму куба. Такое «приближение» модели к действительности начисто исключило бы, по-видимому, развитие космической техники. Приближение «Земля — шар» сделает уравнения, определяющие орбиту, более пригодными; следующее: «Земля — шар, сплюснутый на полюсах» еще приблизит модель к реальной ситуации (хоть и усложнит решение соответствующих уравнений). А вот попытка, например, учесть влияние на гравитационное поле Земли рудных месторождений, плотность которых в среднем выше плотности остального вещества земной коры, пожалуй, будет уже излишней: достигаемое таким образом уточнение расчетных параметров орбиты будет не столь уж значительным с практической точки зрения, но трудности, связанные с решением уравнений, соответствующих новой модели, чрезвычайно возрастут.
Короче говоря, те, кого интересует возможность получения конечного результата расчета (а не его точность), должны обратиться ко второму типу приближенных методов, где результаты непосредственно
Следовательно, когда мы говорим о возможных приближенных подходах к решению интересующей нас задачи определения пространственной структуры молекулы белка, мы имеем в виду именно приближения второго типа; в частности, именно таковы по своему характеру приближения, положенные в основу упоминавшихся методов квантовохимического расчета сложных молекул. При таких подходах обычно какие-то эффекты недоучитываются, какие-то величины полагаются малыми (или, наоборот, очень большими), какие-то процессы считаются независимыми, то есть не влияющими друг на друга; и все эти приближения должны получить солидное теоретическое или экспериментальное обоснование, без которого сами результаты расчета не представляют никакой ценности. Ну и, разумеется, наши приближения должны «работать», должны давать возможность все-таки получать результат ценой не чрезмерных вычислительных усилий, иначе говоря, не превращаться в тот самый уже упоминавшийся камень (так и хочется добавить: «лежачий»).
На каком же пути возможны поиски «работоспособных» приближений?
«Изваять статую крайне просто — нужно лишь отсечь лишние элементы мраморной глыбы». Подобного рода рецепт, авторство которого различные историки искусства приписывают доброму десятку великих скульпторов (последним в этом ряду был, кажется, О. Роден), мог бы с успехом быть перефразирован применительно к деятельности исследователей-теоретиков. При построении рациональной модели объекта исследования (или явления, или процесса) безжалостно отсекаются подробности и оставляются лишь наиболее характерные, типичные, существенные детали. Конечно, всегда нужно считаться с опасностью упустить при этом что-то важное и необходимое, но на такой риск приходится идти: теории, способной объять необъятное, все же нет.
С другой стороны, процесс отсечения ненужных элементов такой уникальной по совершенству и изяществу мраморной глыбы, как квантовая теория строения молекул, следует вести сугубо осторожно: неоправданно смелому теоретику ничего не стоит выплеснуть вместе с водой ребенка.
Может быть, именно поэтому был несколько сдержанно встречен подход к описанию молекулярных структур, развитый в конце 40-х годов советским физиком А. Китайгородским и американцами Ф. Вестхеймером и Т. Хиллом. При определенных допущениях, утверждали они, уравнения квантовой механики все-таки не противоречат возможности представления молекул в виде структуры, состоящей из атомов, которые могут взаимодействовать: притягиваться или отталкиваться. Подобрав на основании данных эксперимента эмпирический закон такого взаимодействия, можно попытаться рассчитать, причем сравнительно просто (с вычислительной точки зрения), целый ряд физических характеристик молекулы. В том числе — что для нас особенно важно — определить устойчивые конформации молекулы.
Поистине непостижима логика нашего повествования! Буквально двумя-тремя страницами ранее авторы усердно убеждали читателя, что рассмотрение всяческих внутримолекулярных явлений не только может, но и должно вестись только на «квантовом языке». И вдруг предлагается искать спасение в упрощенном, наивном да еще и полуэмпирическом (не забудьте, что законы атом-атомного взаимодействия предлагается извлекать из эксперимента) подходе.
Не выглядит ли это если не переходом с развернутыми знаменами и барабанным боем на сторону противника, то, по крайней мере, сдачей теоретических позиций, потом и кровью завоеванных квантовой механикой?