Большая энциклопедия техники
Шрифт:
Свет от своего источника, как правило, это лампы накаливания, проходит через один из шести светофильтров (в современных спектрофотометрах может применяться разное количество светофильтров в зависимости от цели исследования), систему линз (конденсор), кювету с раствором исследуемого вещества, фотометрический клин, после чего фокусируется линзой на фотоприемник, в основном это полупроводниковый фотодиод.
Еще одна необходимая составляющая – цифровой индикатор, который служит для регистрации фотоэлектрического сигнала. Выбор светофильтра, а как следствие, длины волны видимого оптического излучения, осуществляется посредством вращения диска, в который
Фотометрический клин представляет собой две светопоглощающие линзы, при взаимном перемещении которых изменяется оптическая длина пути светового потока и, следовательно, оптическая плотность клина. Другими словами, за счет оптического клина происходит процесс изменения интенсивности светового потока.
В основе работы цифрового спектрофотометра лежит процесс сравнения различных уровней фотоэлектрических сигналов, которые возникают при пропускании света поочередно через стандартную кювету с раствором исследуемого вещества, а затем – через аналогичную кювету с определенным растворителем.
Данный прибор непосредственно измеряет коэффициент пропускания исследуемого раствора.
Конструктивно цифровой спектрофотометр выполнен следующим образом. Отдельно от основного корпуса располагается цифровой индикатор, который показывает значения пропускания исследуемой жидкости.
Стандартные стеклянные кюветы помещаются в специальный держатель, который находится внутри оптического блока прибора, он закрывается автоматической металлической шторкой.
На передней панели находятся несколько кнопок управления (в зависимости от модели цифрового спектрофотометра количество кнопок управления может быть от двух до четырех), но в любом случае присутствует кнопка переключения светофильтров и перемещения держателя кювет. Все остальные действия можно производить с помощью специальной ЭВМ.
В основе принципа работы цифрового спектрофотометра лежит взаимодействие света с веществом.
Данный процесс описывается квантовым образом, поэтому, в отличие от некоторых других лабораторных работ оптического практикума, здесь световое излучение в основном рассматривается как поток фотонов с определенной энергией кванта.
При распространении света в веществе могут возникать различные оптические явления, наиболее важными из которых являются: поглощение, рассеяние света, люминесценция вещества. Поглощение фотонов света, как правило, сопровождается переходом поглощающих свет атомов или молекул в возбужденное состояние. А сам процесс поглощения может произойти только в том случае, если энергия поглощаемого кванта совпадает с разностью энергий между квантами, энергетическими состояниями.
Избыточная энергия атомов или молекул может расходоваться в одних случаях на повышение их поступательной, вращательной или колебательной энергии, в других случаях – выделяться в виде вторичного излучения или расходоваться на различные фотохимические реакции.
В том случае, если осуществляется переизлучение света молекулами возбужденного вещества, происходит явление, получившее название фотолюминесценции.
Рассеяние света – это отклонение светового излучения от прямолинейного распространения на неоднородностях вещества. Под неоднородностями можно понимать такие вещества, как инородные частицы в газе или жидкости, биологические клетки в жидкости, флуктуации плотности вещества, флуктуации концентрации данного вещества в том или ином растворе и т. д.
Процесс рассеяния света также может сопровождаться
Вот почему эти три явления играют огромную роль в диагностической медицине. Именно по показателям крови можно узнать ту или иную степень заболевания и вообще определить, присутствует данное заболевание или нет. Кровь имеет свои определенные показатели поглощения и рассеяния света в состоянии нормальной физиологической деятельности. В том случае, если у больного обнаруживаются какие-либо отклонения от данной физиологической нормы, можно судить о разного рода нарушениях в организме.
Промышленность выпускает несколько типов цифровых спектрофотометров. Существенного различия в них нет.
Электрокардиограф
Электрокардиограф – это прибор, предназначенный для усиления и регистрации биоэлектрических потенциалов, которые возникают как на поверхности тела, так и в полостях внутренних органов, а также в глубине различных биологических тканей в результате электрических процессов, которые сопровождаются распространением возбуждения по сердечной мышце.
В конструкции современного электрокардиографа можно отметить следующие основные компоненты: коммутатор отведений, усилитель биопотенциалов, регистрирующее устройство и устройство калибровки.
Наиболее важной частью любого электрокардиографа являются электроды, за счет которых происходит распознавание самых мельчайших электрических биопотенциалов, после чего данный сигнал отправляется непосредственно к коммутатору отведений. Другими словами, электрический сигнал, который может сниматься с поверхности тела или с полостей внутренних органов, или из глубины тканей, посредством кабеля отведения поступает вначале на коммутатор отведений, а затем – на вход усилителя биопотенциалов, где данный сигнал усиливается до определенной величины, достаточной для приведения в действие гальванометра.
После чего сигнал поступает на вход регистрирующего устройства, где происходит процесс преобразования данного сигнала в перемещение пишущего устройства.
Регистрирующее устройство имеет лентопротяжный механизм, который передвигает с точной, постоянной и определенной скоростью диаграммную бумагу, на которой непосредственно записывается электрокардиограмма.
Именно так называется периодически повторяющаяся кривая, которая представляет собой графическое изображение изменений во времени разности потенциалов между различными точками на теле. Другими словами, электрокардиограмма – это кривая, являющаяся графическим отображением электрических биопотенциалов, возникающих в сердце.
Из истории развития данного аппарата, а также самой науки электрокардиографии можно отметить следующие даты и факты: в 1856 г. начинается развитие самой науки, поскольку именно в том году двое ученых Р. Келликер и И. Мюллер впервые отметили наличие электрических явлений в нормально работающей сердечной мышце на нервно-мышечном препарате лягушки.
В 1873 г. было сконструировано первое подобие электрокардиографа, которое получило название капиллярного электрометра, изобретенного Г. Липпманом. Именно с его помощью впервые записали электрокардиограмму человека.