Большая энциклопедия техники
Шрифт:
Цифровые вольтметры прямого преобразования характеризуются основной погрешностью от 0,1 до 1%. Погрешность вольтметров уравновешивающего преобразования может достигать 0,01—0,05% измеряемой величины. Вольтметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими, электронными и электростатическими. Из данных систем магнитоэлектрические измеряют постоянный ток, индукционные – переменный ток, а остальные как постоянный, так и переменный ток. Измеряемое напряжение определяется как произведение силы тока и сопротивления прибора.
Для
Выключатель
Выключатель – это устройство для включения и выключения электрической цепи.
Выключатель представляет собой контактную систему, которая состоит из неподвижного контакта А и подвижного контакта Б. Когда подвижный и неподвижный контакты не соприкасаются, электрическая цепь выключена. Когда подвижный и неподвижный контакты касаются друг друга, то электрическая цепь включена, по ней протекает электрический ток, благодаря которому загорается лампочка и начинает вращаться двигатель. При выключении цепи под напряжением контактов А и Б возникает электрическая дуга Д.
Длина электрической дуги полностью зависит от напряжения цепи и тока. Чем длиннее дуга, тем больше опасность обгорания и оплавления контактов выключателя, поэтому в цепях высокого напряжения применяются выключатели с дугогасительными устройствами, которые чаще всего производят выключение автоматически.
Выключатели бытовые бывают поворотными, перекидными и групповыми. Выключатели промышленного применения делятся на выключатели низкого напряжения и высокого напряжения. Выключателями низкого напряжения называют рубильники и автоматы. Рубильник – это простейший воздушный выключатель, служащий для ручного включения и выключения электрических цепей напряжением до 500 В и силой тока до 4000 А.
Выключатели-автоматы применяются для отключения цепи электрического тока при перегрузках, замыканиях и других нарушениях работы цепи. Автоматические выключатели бывают минимального и максимального токов.
Выключатель минимального тока состоит из катушки, электромагнита, через который протекает ток, якоря, связанного с контактом и удерживающегося электромагнитом в притянутом положении, пружины, рычага и груза. Контакторы предназначаются для большого числа включений и выключений с напряжением тока до 550 В и его силой до 2,5 А.
Выключатели высокого напряжения делятся на масляные, со сжатым воздухом, с магнитным гашением и газогенерирующие или автогазовые. Выключатели масляные отличаются от остальных тем, что выключение цепи происходит путем разъединения контактов, находящихся в минеральном масле. Чаще всего они изготавливаются на напряжение от 500 до 220 000 В.
Выключатели со сжатым воздухом отличаются от остальных тем, что гашение дуги происходит с помощью сжатого воздуха, который поступает из компрессорной установки. Выключатель с магнитным гашением дуги, созданный в 1912 г. М. О. Доливо-Добровольским, – для вытягивания дуги электромагнитными катушками, когда происходит растяжение дуги с одновременным охлаждением стенок камеры.
Выключатели газогенерирующие или автогазовые действуют благодаря выделяющимся под действием высокой температуры
Выпрямитель электрический
Выпрямитель электрический – это особый тип приборов, в задачи которого входит изменение переменного электрического тока в постоянный.
Чаще всего распределение электрической энергии происходит на трехфазном переменном токе. Элементы выпрямителя тока, которые и осуществляют процесс выпрямления тока, называются вентилями.
В нашей стране впервые об электрических выпрямителях заговорили в начале XX в. В. Ф. Миткевич, исследующий двухполупериодную схему с нулевым выводом, и А. П. Гершун, анализирующий активное сопротивление и индуктивность. Чуть позже, в 1912 г., Н. Д. Папалекси изучал роль индуктивности в анодной и катодной цепи, что будет использовано А. А. Чернышевым в 1918 г. при изучении оксидного катода косвенного начала.
В 1926 г. В. П. Вологдин разработал в Нижнем Новгороде первую советскую конструкцию ртутных выпрямителей, которые были доработаны В. К. Крапивиным. К этому периоду относится создание газотронов и тиратронов Ю. Д. Болдырем и трехфазной мостовой схемы А. Н. Ларионова. Обширные исследования проводились А. Ф. Иоффе, Б. Давыдовым и Д. Блохинцевым.
До сих пор системы электрических выпрямителей дорабатываются и модернизируются.
1. Схема однополупериодного выпрямления тока. В саму схему входят электрический вентиль и трансформатор. Последний играет роль преобразователя напряжения, идущего из сети, в напряжение, которое нужно выпрямителю. В этом случае прямой ток прерывист.
2. Схема двухполупериодного выпрямления тока. Похожа на предыдущую схему, но имеет отличие – при незначительном уменьшении напряжения на вентиле результатом является непрерывный ток.
3. Схема с нулевым выводом. Ее отличительной чертой является наличие двух вентилей, что обусловливает несколько иной, чем у предыдущих, режим работы: когда наступает тот полупериод, в который ток перестает течь через первый вентиль, он поступает на второй и обратно.
4. Мостовая однофазная схема. В ней число вентилей достигает уже четырех, что значительно повышает количество выпрямляемого данной схемой электрического тока. Во вторичной обмотке этой схемы ток течет во все время ее работы.
5. Трехфазная схема с нулевым выводом. В ней электрический ток течет через все три вентиля только во время трети периода.
6. Трехфазная мостовая схема. В ее работе принимают участие уже шесть вентилей, соединенных в группы по два вентиля. В ней включение вентилей чередуется в шахматном порядке.
7. Шестифазные и двенадцатифазные схемы являются производными от предыдущей трехфазной, но только с возрастанием вторичной обмотки. В них ток еще сильнее сглаживается.
8. Ртутные выпрямители тока, которые выполнены из стеклянного или металлического корпуса. Верхняя часть данного выпрямителя служит для конденсирования паров ртути, а нижняя часть способствует стеканию ртути к катоду. В средней же части приварены железные или графитные аноды.