Большая энциклопедия техники
Шрифт:
Включение выпрямителя происходит с помощью анода зажигания. Анод погружается в ртуть за счет внешнего электромагнита. Многоанодные выпрямители всегда имеют общий катод и по режиму действия вспомогательной дуги могут различаться вентилями с дугой возбуждения и вентилями с периодическим зажиганием.
9. В ионных выпрямителях высокого давления дуговой разряд между анодом и катодом происходит в атмосфере газа повышенного давления, когда происходит периодическое зажигание дуги.
Выпрямительный столб
Выпрямительный столб – это устройство, которое представляет собой совокупность соединенных последовательно выпрямителей полупроводниковых диодов. Выпрямительный столб предназначен в радиоэлектронике и электротехнике в качестве высоковольтного (как правило, выше 10 кВ) выпрямителя переменного
Выпрямительный столб используется в радиотехнических, электротехнических приборах и устройствах. Конструкция выпрямительного столба содержит до 10 (и более) германиевых или кремниевых диодов, оформляется в пластмассовом корпусе с двумя электрическими выводами. Среднее значение выпрямленного тока выпрямительного столба составляет 75—500 мА, обратное напряжение – от 2 до 15 кВ, прямое падение напряжения – 2,5—11 В, масса – от 25 до 90 г. Так как германиевые выпрямительные диоды имеют большой разброс по величине обратного сопротивления и пробивного напряжения, то для надежной работы каждый из германиевых диодов шунтируют высокоомным резистором. Это обеспечивает равномерное обратное напряжение между диодами.
Наиболее распространенными являются кремниевые выпрямительные столбы. В них нет необходимости шунтировать отдельные диоды, поскольку вольтамперная характеристика кремниевого выпрямительного диода не имеет падающего предпробойного участка и равномерное распределение обратного напряжения достигается автоматически. К достоинствам кремниевых выпрямительных столбов следует отнести то, что кремниевые выпрямительные диоды допускают более высокие обратные напряжения, чем германиевые.
Выпрямительные столбы используются в радиотехнических, электротехнических приборах и устройствах, их применяют в радиолокационной и телевизионной аппаратуре.
Газонаполненный кабель
Газонаполненный кабель – это гибкие изолированные провода, переводящие электрический ток, изготовленные из медных или алюминиевых жил, в которых с целью повышения давления обычный кабель прокладывается внутри стальной трубы, а следом начинает подаваться газ под давлением 15 атмосфер.
Это помогает увеличить электрическую прочность кабеля в два раза, и газ дополнительно вводится в изолирующий слой под свинцовую оболочку. Получается газонаполненный кабель. Газонаполненный кабель может быть низкого давления (до 1,5 атмосфер), среднего (до 5 атмосфер) или высокого давления (до 20 атмосфер).
Для напряжения электрического тока до 10 000 В газонаполненный кабель изготавливается как обычный, лишь только 3 изолированные жилы скручиваются так, чтобы остались каналы для газового заполнения.
Для напряжения до 35 000 В газонаполненные кабели применяются только на вертикальной проводке и заполняются газом по типу маслонаполненного кабеля.
Газоразрядный прибор
Газоразрядный прибор (ионный прибор) – электровакуумный прибор, работа которого базируется на применении всевозможных видов электрических разрядов в парах металлов или газах. Существуют газоразрядные приборы тлеющего разряда (цифровые индикаторные лампы, тиратроны с холодным катодом и пр.), дугового разряда, в основном с накаливаемым катодом (таситроны, тиратроны, ртутные вентили и пр.), коронного разряда (стабилитроны и пр.), искрового разряда (тригатроны и пр.). В отдельную группу газоразрядных приборов входят газовые лазеры, газоразрядные источники света и т. д.
Газотрон
Газотрон – двухэлектродный ионный прибор, применяемый в качестве вентиля с неуправляемым электрическим разрядом. Газотроны используют, как правило, в высоковольтных выпрямителях радиопередатчиков переменного электрического тока. Электроды газотрона – анод, производимый из никеля, графита или стали, и оксидный катод с косвенным или прямым подогревом, которые помещены в среду инертного газа, либо смеси газов под давлением 0,1—0,25 мм рт. ст. или паров ртути под давлением 0,001—0,01 мм рт. ст.
Катод обычно размещают в металлическом (тепловом) экране для облегчения теплового режима работы. Выпрямляющее действие газотрона объясняется тем, что на аноде при положительном полупериоде переменного напряжения, которое превышает напряжение зажигания газотрона, между катодом и анодом образуется несамостоятельный дуговой разряд, поддерживающийся малым напряжением горения (10—30 В), а при отрицательном полупериоде на аноде падает максимально выпрямляемое напряжение и ток
Галетная батарея
Галетная батарея – это последовательно соединенные сухие лекланше элементы слоеной конструкции, напоминающие галеты.
Галетная батарея меняется в зависимости от размера галет и их числа в батарее и используется в качестве автономного источника электроэнергии в геофизических приборах.
Генератор постоянного тока
Генератор постоянного тока – это машина, способная преобразовывать механическую энергию вращения в электрическую энергию постоянного тока.
В 1831 г. Майкл Фарадей открыл закон магнитной индукции, что положило начало самой идее создания таких генераторов. В 1832 г. произошла первая попытка сконструировать генератор постоянного тока, но в практическом отношении эта машина была слишком несовершенна и не получила применения. В 1834 г. русский ученый Б. С. Якоби создал первую пригодную для использования машину постоянного тока. В 40-е гг. XIX в. Э. Х. Ленц начал изучение теории работы генераторов постоянного тока. В 1860 г. А. Пачинотти решил использовать кольцевой якорь, который позднее получил очень широкое применение. Дальнейшее развитие генераторов постоянного тока проходило по пути улучшения эксплуатационных качеств генераторов при сокращении их объема. В 80-х гг. XIX в. А. Г. Столетовым была создана научно обоснованная теория генераторов постоянного тока. В конце 20-х гг. XX в. шло ускоренное развитие генераторов постоянного тока. В это же время в их конструкцию был внесен целый ряд усовершенствований, что, в свою очередь, делало их более выгодными в использовании.
Генератор постоянного тока состоит из неподвижной станины, внутри которой располагаются полюсы электромагнитов разной полярности. Другая часть – вращающийся ротор или якорь, выполненный из электротехнической стали, – изолирует один лист якоря генератора от другого лаковой пленкой или папиросной бумагой. Спрессованные листы образуют цилиндр, который крепится на валу. С внешней стороны цилиндра штампуются отверстия, которые образуют пазы, предназначенные для укладки обмотки якоря. Переменная ЭДС в обмотке, приводящая к получению напряжения на зажимах генератора при помощи механического выпрямителя – коллектора, совершает выпрямление. Как любая электрическая машина, генератор постоянного тока имеет свойства обратимости электрической энергии постоянного тока в механическую энергию вращательного движения. При нагрузке генератора постоянного тока напряжение на щетках меняется из-за падения напряжения в обмотке якоря. Ток нагрузки протекает по проводникам обмотки якоря и создает механические силы, которые мешают вращению. Существует два способа возбуждения электромагнитов станины: независимая от тока нагрузки и зависимая от тока нагрузки. Способ зависимого тока нагрузки происходит при помощи параллельного включения обмотки возбуждения, последовательного включения и комбинированного включения, а также имеет место самовозбуждение генератора постоянного тока. Независимое возбуждение тока нагрузки происходит за счет питания от иного источника тока, не связанного с током нагрузки. Напряжение генераторов обычно равняется нескольким сотням вольт. При воздействии автоматического управления на ток возбуждения генератор-регулятор добавляет в регулируемую им цепь ЭДС определенной величины и знака. Процесс преобразования механической энергии в электрическую постоянно связан с потерей энергии, рассеивающей тепло. Во избежание перегрева генератора постоянного тока создается система воздушного охлаждения, которая непосредственно связана с вращающимся якорем.