Большая Советская Энциклопедия (РЕ)
Шрифт:
Показатель преломления n для Р. л. отличается от 1 на очень малую величину d = 1—n » 10– 6—10– 5. Фазовая скорость Р. л. в среде больше скорости света в вакууме. Отклонение Р. л. при переходе из одной среды в другую очень мало (несколько угловых минут). При падении Р. л. из вакуума на поверхность тела под очень малым углом происходит их полное внешнее отражение.
Регистрация Р. л. Глаз человека к Р. л. не чувствителен. Р. л. регистрируют с помощью специальной рентгеновской фотоплёнки, содержащей повышенное количество AgBr. В области l < 0,5
Р. л. больших интенсивностей можно регистрировать с помощью ионизационной камеры, Р. л. средних и малых интенсивностей при l < 3
Применение Р. л. Наиболее широкое применение Р. л. нашли в медицине для рентгенодиагностики и рентгенотерапии. Важное значение для многих отраслей техники имеет рентгеновская дефектоскопия, например для обнаружения внутренних пороков отливок (раковин, включений шлака), трещин в рельсах, дефектов сварных швов.
Рентгеновский структурный анализпозволяет установить пространственное расположение атомов в кристаллической решётке минералов и соединений, в неорганических и органических молекулах. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограммеполикристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, т. е. выполнен фазовый анализ (см. Дебая — Шеррера метод). Многочисленными применениями Р. л. для изучения свойств твёрдых тел занимается рентгенография материалов.
Рентгеновская микроскопия позволяет, например, получить изображение клетки, микроорганизма, увидеть их внутреннее строение. Рентгеновская спектроскопияпо рентгеновским спектрам изучает распределение плотности электронных состояний по энергиям в различных веществах, исследует природу химической связи, находит эффективный заряд ионов в твёрдых телах и молекулах. Спектральный анализ рентгеновский по положению и интенсивности линий характеристического спектра позволяет установить качественный и количественный состав вещества и служит для экспрессного неразрушающего контроля состава материалов на металлургических и цементных заводах, обогатительных фабриках. При автоматизации этих предприятий применяются в качестве датчиков состава вещества рентгеновские спектрометры и квантометры (см. Спектральная аппаратура рентгеновская).
Р. л., приходящие из космоса, несут информацию о химическом составе космических тел и о физических процессах, происходящих в космосе. Исследованием космических Р. л. занимается рентгеновская астрономия. Мощные Р. л. используют в радиационной химии для стимулирования некоторых реакций, полимеризации материалов, крекинга органических веществ. Р. л. применяют также для обнаружения старинной живописи, скрытой под слоем поздней росписи, в пищевой промышленности для выявления инородных предметов, случайно попавших в пищевые продукты, в криминалистике, археологии и др.
Лит.: Блохин М. А., Физика рентгеновских лучей, 2 изд., М., 1957; его же, Методы рентгено-спектральных исследований, М., 1959; Рентгеновские лучи. Сб. под ред. М. А. Блохина, пер. с нем. и англ., М., 1960; Хараджа Ф., Общий курс рентгенотехники, 3 изд., М. — Л., 1966; Миркин Л. И., Справочник по рентгено-структурному анализу поликристаллов, М., 1961; Вайнштейн Э. Е., Кахана М. М., Справочные таблицы по рентгеновской спектроскопии, М., 1953.
М. А. Блохин.
Рентгеновские спектры
Рентге'новские спе'ктры, спектры испускания и поглощения рентгеновских лучей, т. е. электромагнитного излучения в области длин волн от 10– 4 до 103
Спектр излучения рентгеновской трубки представляет собой наложение тормозного и характеристического Р. с. Тормозной Р. с. возникает при торможении заряженных частиц, бомбардирующих мишень (см. Тормозное излучение). Интенсивность тормозного спектра быстро растет с уменьшением массы бомбардирующих частиц и достигает значительной величины при возбуждении электронами. Тормозной Р. с. — сплошной, так как частица может потерять при тормозном излучении любую часть своей энергии. Он непрерывно распределён по всем длинам волн l, вплоть до коротковолновой границы l = hc/eV (h — Планка постоянная, с — скорость света, е — заряд бомбардирующей частицы, V — пройденная ею разность потенциалов). С возрастанием энергии частиц интенсивность тормозного Р. с. I растет, а l смещается в сторону коротких волн (рис. 1). С увеличением порядкового номера Z атомов мишени I также растет.
Характеристические Р. с. испускают атомы мишени, у которых при столкновении с заряженной частицей высокой энергии или фотоном первичного рентгеновского излучения с одной из внутренних оболочек (К-, L-, М-... оболочек) вылетает электрон. Состояние атома с вакансией во внутренней оболочке (его начальное состояние) неустойчиво. Электрон одной из внешних оболочек может заполнить эту вакансию, и атом при этом переходит в конечное состояние с меньшей энергией (состояние с вакансией во внешней оболочке). Избыток энергии атом может испустить в виде фотона характеристического излучения. Поскольку энергии E1начального и E2 конечного состояний атома квантованы, возникает линия Р. с. с частотой n = (E1 — E2)/h. Все возможные излучательные квантовые переходыатома из начального К– состояния образуют наиболее жёсткую (коротковолновую) К– серию. Аналогично образуются L-, М-, N-серии (рис. 2). Положение линий характеристического Р. с. зависит от атомного номера элемента, составляющего мишень (см. Мозли закон).
Каждая серия характеристического Р. с. возбуждается при прохождении бомбардирующими частицами определённой разности потенциалов — потенциала возбуждения Vq(q — индекс возбуждаемой серии). При дальнейшем росте V интенсивность / линий этого спектра растет пропорционально (V — Vq)2 затем рост интенсивности замедляется и при V » 11 Vq начинает падать.