Чтение онлайн

на главную - закладки

Жанры

Большая Советская Энциклопедия (РЕ)
Шрифт:

Р. т. применяют в рентгеновском структурном анализе (рис. 1, а), спектральном анализе рентгеновском, дефектоскопии (рис. 1, б), рентгенодиагностике (рис. 1, б), рентгенотерапии, рентгеновской микроскопии и микрорентгенографии. Наибольшее применение во всех областях находят отпаянные Р. т. с термоэмиссионным катодом, водоохлаждаемым анодом, электростатической системой фокусировки электронов (рис. 2). Термоэмиссионный катод Р. т. обычно представляет собой спираль или прямую нить из вольфрамовой проволоки, накаливаемую электрическим током. Рабочий участок анода — металлическая зеркальная поверхность — расположен перпендикулярно или под некоторым углом к потоку электронов. Для получения сплошного спектра рентгеновского излучения высоких энергий и интенсивности используют аноды из Au, W; в структурном анализе пользуются Р. т. с анодами из Ti, Cr, Fe, Co, Ni, Cu, Mo, Ag. Основные характеристики Р. т. — предельно

допустимое ускоряющее напряжение (1—500 кв), электронный ток (0,01 ма — 1а), удельная мощность, рассеиваемая анодом (10—104 вт/мм2), общая потребляемая мощность (0,002 вт — 60 квт) и размеры фокуса (1 мкм — 10 мм). Кпд Р. т. составляет 0,1—3%.

Лит.: Тейлор А., Рентгеновская металлография, пер. с англ., М., 1965; Уманский Я. С., Рентгенография металлов и полупроводников, М., 1969; Шмелев В, К., Рентгеновские аппараты, М., 1973.

В. Г. Лютцау.

Рис. 2. Схема рентгеновской трубки для структурного анализа: 1 — металлический анодный стакан (обычно заземляется); 2 — окна из бериллия для выхода рентгеновского излучения; 3 — термоэмиссионный катод; 4 — стеклянная колба, изолирующая анодную часть трубки от катодной; 5 — выводы катода, к которым подводится напряжение накала, а также высокое (относительно анода) напряжение; 6 — электростатическая система фокусировки электронов; 7 — анод (антикатод); 8 — патрубки для ввода и вывода проточной воды, охлаждающей анодный стакан.

Рис. 1. Общий вид рентгеновских трубок для структурного анализа (а), дефектоскопии (б) и медицинской рентгенодиагностики (в).

Рентгеновские лучи

Рентге'новские лучи', рентгеновское излучение, электромагнитное ионизирующее излучение, занимающее спектральную область между гамма- и ультрафиолетовым излучением в пределах длин волн от 10– 4 до 103

 (от 10– 12 до 10– 5см). Р. л. с длиной волны l < 2
 условно называются жёсткими, с l > 2
 — мягкими. Р. л. открыты в 1895 В. К. Рентгеноми названы им Х-лучами (этот термин применяется во многих странах). В течение 1895—97 Рентген исследовал свойства Р. л. и создал первые рентгеновские трубки. Он обнаружил, что жёсткие Р. л. проникают через различные материалы и мягкие ткани человеческого тела (это свойство Р. л. быстро нашло применение в медицине). Открытие Р. л. привлекло внимание учёных всего мира, и уже в 1896 было опубликовано свыше 1000 работ по исследованиям и применениям Р. л. Электромагнитная природа Р. л. была предсказана Дж. Стоксом и экспериментально подтверждена Ч. Баркла, открывшим их поляризацию. В 1912 нем. физики М. Лауэ, В. Фридрих и П. Книппинг обнаружили дифракцию Р. л. на атомной решётке кристаллов (см. Дифракция рентгеновских лучей). В 1913 Г. В. Вульф и независимо от него У. Л. Брэгг нашли простую зависимость между углом дифракции, длиной волны Р. л. и расстоянием между соседними параллельными атомными плоскостями кристалла (см. Брэгга — Вульфа условие). Эти работы послужили основой для рентгеновского структурного анализа. В 20-х гг. началось применение рентгеновских спектров для элементного анализа материалов, а в 30-х гг. — к исследованию электронной энергетической структуры вещества. В СССР в развитии исследований и применении Р. л. большую роль сыграл Физико-технический институт, основанный А. Ф. Иоффе.

Источники Р. л. Наиболее распространённый источник Р. л. — рентгеновская трубка. В качестве источников Р. л. могут служить также некоторые радиоактивные изотопы: одни из них непосредственно испускают Р. л., ядерные излучения других (электроны или a-частицы) бомбардируют металлическую мишень, которая испускает Р. л. Интенсивность рентгеновского излучения изотопных источников на несколько порядков меньше интенсивности излучения рентгеновской трубки, но габариты, вес и стоимость изотопных источников несравненно меньше, чем установки с рентгеновской трубкой.

Источниками мягких Р. л. с l порядка десятков и сотен

 могут служить синхротроны и накопители электронов с энергиями в несколько Гэв. По интенсивности рентгеновское излучение синхротронов превосходит в указанной области спектра излучение рентгеновской трубки на 2—3 порядка.

Естественные источники Р. л. — Солнце и другие космические объекты.

Свойства Р.л. В зависимости от механизма возникновения Р. л. их спектры могут быть непрерывными (тормозными) или линейчатыми (характеристическими). Непрерывный рентгеновский спектр испускают быстрые заряженные частицы в результате их торможения при взаимодействии с атомами мишени (см. Тормозное излучение); этот спектр достигает значительной интенсивности лишь при бомбардировке мишени электронами. Интенсивность тормозных Р. л. распределена по всем частотам до высокочастотной границы n, на которой энергия фотонов hn(h — Планка постоянная) равна энергии eV бомбардирующих электронов (е — заряд электрона, V — разность потенциалов ускоряющего поля, пройденная ими). Этой частоте соответствует коротковолновая граница спектра l = hc/eV (с — скорость света).

Линейчатое излучение возникает после ионизации атома с выбрасыванием электрона одной из его внутренних оболочек. Такая ионизация может быть результатом столкновения атома с быстрой частицей, например электроном (первичные Р. л.), или поглощения атомом фотона (флуоресцентные Р. л.). Ионизованный атом оказывается в начальном квантовом состоянии на одном из высоких уровней энергии и через 10– 16—10– 15сек переходит в конечное состояние с меньшей энергией. При этом избыток энергии атом может испустить в виде фотона определённой частоты. Частоты линий спектра такого излучения характерны для атомов каждого элемента, поэтому линейчатый рентгеновский спектр называется характеристическим. Зависимость частоты n линий этого спектра от атомного номера Z определяется Мозли законом:

 = AZ + В, где А и В — величины, постоянные для каждой линии спектра.

Тормозное рентгеновское излучение, испускаемое очень тонкими мишенями, полностью поляризовано вблизи n; с уменьшением n степень поляризации падает. Характеристическое излучение, как правило, не поляризовано.

При взаимодействии Р. л. с веществом может происходить фотоэффект, сопровождающее его поглощение Р. л. и их рассеяние, фотоэффект наблюдается в том случае, когда атом, поглощая рентгеновский фотон, выбрасывает один из своих внутренних электронов, после чего может совершить либо излучательный переход, испустив фотон характеристического излучения, либо выбросить второй электрон при безызлучательном переходе (оже-электрон). Под действием Р. л. на неметаллические кристаллы (например, на каменную соль) в некоторых узлах атомной решётки появляются ионы с дополнительным положительным зарядом, а вблизи них оказываются избыточные электроны. Такие нарушения структуры кристаллов, называемые рентгеновскими экситонами, являются центрами окраски и исчезают лишь при значительном повышении температуры.

При прохождении Р. л. через слой вещества толщиной х их начальная интенсивность Iуменьшается до величины I = Iemx где m — коэффициент ослабления. Ослабление I происходит за счёт двух процессов: поглощения рентгеновских фотонов веществом и изменения их направления при рассеянии. В длинноволновой области спектра преобладает поглощение Р. л., в коротковолновой — их рассеяние. Степень поглощения быстро растет с увеличением Z и l. Например, жёсткие Р. л. свободно проникают через слой воздуха ~ 10 см; алюминиевая пластинка в 3 см толщиной ослабляет Р. л. с l = 0,027

 вдвое; мягкие Р. л. значительно поглощаются в воздухе и их использование и исследование возможно лишь в вакууме или в слабо поглощающем газе (например, Не). При поглощении Р. л. атомы вещества ионизуются.

Влияние Р. л. на живые организмы может быть полезным и вредным в зависимости от вызванной ими ионизации в тканях. Поскольку поглощение Р. л. зависит от l, интенсивность их не может служить мерой биологического действия Р. л. Количественным учётом действия Р. л. на вещество занимается рентгенометрия, единицей его измерения служит рентген.

Рассеяние Р. л. в области больших Z и l происходит в основном без изменения l и носит название когерентного рассеяния, а в области малых Z и l, как правило, возрастает (некогерентное рассеяние). Известно 2 вида некогерентного рассеяния Р. л. — комптоновское и комбинационное. При комптоновском рассеянии, носящем характер неупругого корпускулярного рассеяния, за счёт частично потерянной рентгеновским фотоном энергии из оболочки атома вылетает электрон отдачи (см. Комптона эффект). При этом уменьшается энергия фотона и изменяется его направление; изменение l зависит от угла рассеяния. При комбинационном рассеянии рентгеновского фотона высокой энергии на лёгком атоме небольшая часть его энергии тратится на ионизацию атома и меняется направление движения фотона. Изменение таких фотонов не зависит от угла рассеяния.

Поделиться:
Популярные книги

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V

Кодекс Охотника. Книга ХХ

Винокуров Юрий
20. Кодекс Охотника
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга ХХ

Школа. Первый пояс

Игнатов Михаил Павлович
2. Путь
Фантастика:
фэнтези
7.67
рейтинг книги
Школа. Первый пояс

Последний Паладин. Том 7

Саваровский Роман
7. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 7

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Магия чистых душ 2

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.56
рейтинг книги
Магия чистых душ 2

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Огни Аль-Тура. Завоеванная

Макушева Магда
4. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Аль-Тура. Завоеванная

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Заставь меня остановиться 2

Юнина Наталья
2. Заставь меня остановиться
Любовные романы:
современные любовные романы
6.29
рейтинг книги
Заставь меня остановиться 2