Большая Советская Энциклопедия (РИ)
Шрифт:
Простейшие понятия римановой геометрии. 1) Длина дуги s кривой
вдоль этой кривой (что соответствует как бы измерению длин «малым масштабом», как отметил ещё Риман). Если любые две точки пространства R соединимы кривой, то R становится метрическим пространством: расстояние r(Х, Y) между двумя точками определяется как точная нижняя грань длин кривых, соединяющих эти точки, и называется внутренней метрикой риманова пространства R.
2) Угол между двумя исходящими из одной точки А кривыми определяется как угол между касательными векторами к кривым в точке А.
3) Объём Vn– мерной области G риманова пространства определяется по формуле:
Геодезические. Линии, которые в достаточно малых областях являются кратчайшими из всех кривых с теми же концами, называются геодезическими, они играют роль прямых в римановом пространстве R. По определению, они являются экстремалями функционала
(см. Вариационное исчисление) и удовлетворяют уравнениям:
где Гijk — так называемые Кристоффеля символы, выражающиеся через компоненты метрического тензора gij и их первые производные. Через каждую точку риманова пространства в любом направлении проходит геодезическая; любые две точки А, В достаточно малой области можно соединить кратчайшей [длина её будет равна внутреннему расстоянию r(А, В) между этими точками], и притом единственной, однако единственность может нарушаться, если точки достаточно удалены друг от друга (например, полюсы сферы соединимы бесконечным множеством дуг больших кругов, являющихся кратчайшими).
Представляет интерес (для описания периодических движений в механической задаче многих тел, например) оценка числа n замкнутых геодезических пространства R; эта задача (поставленная Ж. А. Пуанкарев 1905 в связи с некоторыми вопросами небесной механики), несмотря на усилия многих математиков, ещё далека от завершения, наилучший результат: n ³ 2, если R односвязно.
Соприкасающееся пространство. Между римановым пространством R и касательным к нему евклидовым пространством в окрестности U некоторой точки А можно установить такое соответствие, при котором оба пространства будут совпадать с точностью до малых выше второго порядка. Для этого проводят из точки А геодезические во всех направлениях и каждой из них в касательном пространстве сопоставляют луч соответствующего направления, а затем устанавливают такое соответствие этих лучей и геодезических, при котором длины дуг геодезических b соответствующих им лучей равны. В достаточно малой окрестности такое соответствие будет взаимно однозначным; если ввести в касательном пространстве декартовы координаты x1,..., xn и приписать их значения соответствующим точкам окрестности U, то между линейными элементами ds риманова и dso евклидова пространств будет такая связь:
i = 1, …, n.
откуда следует, что разность ds — dso имеет порядок не ниже, чем
Евклидово пространство, поставленное в такое соответствие с римановым, и называется соприкасающимся (в отличие от обычного касательного пространства). Добиться более высокого порядка совпадения за счёт специального выбора соответствия между римановым и евклидовым пространствами в общем случае уже невозможно. Поэтому коэффициенты Rmlki характеризуют отличие риманова пространства от евклидова; они являются компонентами так называемого тензора кривизны (или тензора Римана — Кристоффеля), определяемого по формуле
лишь через gik, и их производные до второго порядка.
Тождественное обращение в нуль тензора кривизны необходимо и достаточно для того, чтобы пространство в окрестности каждой точки совпадало с евклидовым (в целом оно может отличаться от него своим строением, подобно тому как боковая поверхность цилиндра отличается от плоскости).
Параллельное перенесение. Для всякой гладкой кривой L риманова пространства существует отображение её окрестности UL в евклидово пространство ELпри котором оно оказывается соприкасающимся во всех точках кривой L. Образ кривой L в пространстве EL называется развёрткой L' этой кривой на евклидово пространство (для поверхности F в евклидовом пространстве соприкасающееся евклидово пространство вдоль кривой L можно интерпретировать как развёрнутую на плоскость огибающую семейства плоскостей, касательных к F вдоль L). Вектор (и любой тензор) параллельно переносится вдоль кривой L, если параллельно переносится соответствующий вектор (тензор) в евклидовом пространстве EL, соприкасающемся с римановым вдоль этой кривой. Аналитически параллельное перенесение вектора ai вдоль кривой xi= xi (t) определяется дифференциальным уравнением
Если
Геодезическая кривизна (первая кривизна) кривой L в точке М оценивает её отклонение от геодезической L, касающейся L в точке М, и определяется следующим образом. Пусть касательный вектор к L в точке М параллельно перенесён в точку M' и образует там угол j с касательной к L в точке М, пусть s — длина дуги MM' кривой L. При стремлении M' к М существует предел
который и называется геодезической кривизной кривой L в точке М. Аналитически геодезическая кривизна кривой xI= xi (s), параметризованной длиной дуги, определяется формулами: