Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (РИ)
Шрифт:

,

где

;

таким образом, геодезическая кривизна кривой L совпадает с (первой) кривизнойеё развёртки L, а геодезические линии во всех точках имеют нулевую геодезическую кривизну.

Для кривой L в римановом пространстве R определяются также вторая и т.д. кривизны и имеют место соотношения, аналогичные обычным формулам Френе (см. Дифференциальная геометрия) для кривых евклидова пространства.

Риманова кривизна. Пусть М — точка риманова пространства, F — двумерная поверхность xi= xi (u, u),

проходящая через М, L — простой замкнутый контур на F, проходящий через М, s площадь участка поверхности, ограниченного контуром L. Пусть произвольный вектор ai, касательный к поверхности F (т. е. линейно выражающийся через векторы
), перенесен параллельно по L.

Тогда составляющая перенесённого вектора, касательная к F, окажется повёрнутой по отношению к ai на угол j (положительное направление отсчёта углов должно совпадать с направлением обхода L). При стягивании L в точку М существует предел

,

называется кривизной риманова пространства (римановой кривизной) в данной точке в направлении двумерной поверхности; К зависит не от поверхности, а лишь от её направления в точке М, т. е. от направления двумерной плоскости касательного евклидова пространства, содержащей векторы

.

Риманова кривизна К связана с тензором кривизны формулой:

,

где

,

причём параметры u, u выбраны так, что площадь параллелограмма, построенного на векторах

, равна 1.

В двумерном случае К совпадает с полной кривизной (Theorema egregium К. Ф. Гаусса, 1827), при этом для области G, ограниченной простой замкнутой кривой Г, имеющей геодезическую кривизну k, справедлива так называемая формула Гаусса-Бонне:

,

в частности, для треугольника, образованного отрезками геодезических

,

где А, В,С — величины углов треугольника. Для замкнутого (т. е. без границы) двумерного риманова пространства R его эйлерова характеристика c(R) пропорциональна интегралу римановой кривизны:

.

Эта формула обобщена на случай чётно-мерного замкнутого риманова пространства, в котором интегрируется некоторая функция компонент тензора кривизны.

Если в каждой точке риманова пространства кривизна не зависит от направления двумерной поверхности, то она не меняется и от точки к точке, т. е. пространство имеет постоянную кривизну. Представляют интерес также (в частности, для описания механических систем с циклическими координатами) римановы пространства со специальной структурой тензора кривизны; они суть обобщение пространств постоянной кривизны и имеют достаточно обширную группу движений. Таковы, например, симметрические пространства, характеризующиеся тем, что их тензор кривизны не меняется при параллельном перенесении, субпроективные пространства, характеризующиеся специальной координатной системой, в которой геодезические описываются линейными уравнениями, и др.

Риманова кривизна играет важную роль в геометрических приложениях Р. г.,

тем более, что на всяком многообразии можно ввести некоторую риманову метрику. Так, например, топологическое строение полных римановых пространств (т. е. пространств, в которых всякая геодезическая бесконечно продолжаема) зависит от свойств его кривизны: всякое полное односвязное n– мерное риманово пространство гомеоморфно n– мерному евклидову пространству, если его кривизна во всех точках и по всем направлениям неположительна и гомеоморфна n– мерной сфере единичного радиуса, если его кривизна К удовлетворяет неравенствам
, где d — некоторая постоянная. От величины кривизны полного риманова пространства R зависит и его диаметр d — точная верхняя грань расстояний между точками R, определяемых внутренней метрикой R: например, если К ³ Ko > , то
d, если же
, то R — сфера радиуса
.

Метрическая связность. Параллельное перенесение вдоль кривой L с концами А, В задаёт изометричное (т. е. сохраняющее расстояния) преобразование ti касательного пространства EA в точке А в касательное пространство EB в точке А. Дифференциал преобразования ti в точке А, т. е. главная линейная часть изменения ti; при переходе из А (xi) в близкую точку

(xi+ dxi), определяет некоторый геометрический объект, называется римановой связностью, ассоциированной с данным параллельным перенесением. Аналитически эта связность выражается системой линейных дифференциальных форм

, i, j, …, n.

Однако в римановом пространстве R можно определить и другие связности, такие, что ассоциированные с ними параллельные перенесения также сохраняют метрический тензор; они называются метрическими связностями и определяются аналогичными коэффициентами

, но уже не симметричными по индексам j,k и не выражающимися (подобно символам Кристоффеля) только через тензор gij и его производные. Отличие метрической связности от римановой оценивается так называемым тензором кручения:

,

геометрический смысл которого иллюстрируется следующим образом. Рассмотрим в двумерном римановом пространстве метрической связности малый треугольник, образованный отрезками геодезических длины а, b, с и углами А, В, С. Тогда главная часть проекции кручения в точке А на сторону AB равна отношению величины с — acosB — bcosA к площади треугольника, а главная часть проекции кручения на перпендикуляр к AB — величине asinB — bsinA, деленной на площадь треугольника. Т. о., в римановом пространстве нулевого кручения имеют место теоремы косинусов и синусов обыкновенной тригонометрии с точностью до величин, малых в сравнении с площадью треугольника.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Повелитель механического легиона. Том I

Лисицин Евгений
1. Повелитель механического легиона
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том I

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

«Три звезды» миллиардера. Отель для новобрачных

Тоцка Тала
2. Три звезды
Любовные романы:
современные любовные романы
7.50
рейтинг книги
«Три звезды» миллиардера. Отель для новобрачных

Мой любимый (не) медведь

Юнина Наталья
Любовные романы:
современные любовные романы
7.90
рейтинг книги
Мой любимый (не) медведь

Сопряжение 9

Астахов Евгений Евгеньевич
9. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
технофэнтези
рпг
5.00
рейтинг книги
Сопряжение 9

Сержант. Назад в СССР. Книга 4

Гаусс Максим
4. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Сержант. Назад в СССР. Книга 4

Табу на вожделение. Мечта профессора

Сладкова Людмила Викторовна
4. Яд первой любви
Любовные романы:
современные любовные романы
5.58
рейтинг книги
Табу на вожделение. Мечта профессора

Довлатов. Сонный лекарь 2

Голд Джон
2. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 2

70 Рублей - 2. Здравствуй S-T-I-K-S

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S

Провинциал. Книга 4

Лопарев Игорь Викторович
4. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 4

Горничная для тирана

Шагаева Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Горничная для тирана

Вечный. Книга IV

Рокотов Алексей
4. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга IV

Как я строил магическую империю 3

Зубов Константин
3. Как я строил магическую империю
Фантастика:
попаданцы
постапокалипсис
аниме
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 3