Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (ВА)
Шрифт:

Прямые методы . В. и. как самостоятельная научная дисциплина сформировалась в 18 в., главным образом благодаря работам Л. Эйлера .

Простейшей задачей В. и. называют задачу отыскания функции x (t ), доставляющей экстремум функционалу

где F — непрерывная и дифференцируемая функция своих аргументов. При этом функция x (t ) должна

удовлетворять следующим условиям:

а) она должна быть кусочно дифференцируемой,

б) при t = to и t = T она должна принимать значения

х (to ) = х , х (Т) = хт . (2)

Обе задачи, рассмотренные в начале статьи, являются частными случаями простейшей задачи В. и.

Первые вариационные задачи были задачами механики. Они были поставлены в 18 в. и, следуя традициям того времени, первый вопрос, на который надо было ответить, был вопрос о способе фактического отыскания функции x (t ), реализующей минимум функционала (1).

Эйлер создал численный метод решения задач В. и., который получил название Эйлера метода ломаных . Этот метод был первым среди большого класса, так называемых, прямых методов ; все они основаны на редукции задачи отыскания экстремума функционала к задаче отыскания экстремума функции многих переменных. Поскольку для получения решения с высокой точностью задачу приходится сводить к отысканию экстремума функции с большим числом переменных, она становится весьма сложной для ручного счёта. Поэтому долгое время прямые методы были вне основного русла, по которому направлялись усилия математиков, занимавшихся В. и.

В 20 в. интерес к прямым методам значительно усилился. Прежде всего были предложены новые способы редукции к задаче об экстремуме функции конечного числа переменных. Поясним эти идеи на простом примере. Рассмотрим снова задачу отыскания минимума функционала (1) при дополнит. условии

x (to ) = x (T) = 0 (3)

и будем разыскивать решение задачи в форме

где jn (t) — некоторая система функций, удовлетворяющих условиям типа (3). Тогда функционал J (x) становится функцией коэффициентов ai :

J = J (ai ,..., aN ),

и задача сводится к отысканию минимума этой функции N переменных. При известных условиях, наложенных на систему функций {jn } , решение этой задачи стремится при N ® yen к решению задачи (1) (см. Ритца и Галёркина методы ).

Другая причина усиления интереса к прямым методам — это систематическое изучение конечноразностных методов в задачах математической физики, начавшееся с 20-х гг. 20 в. Применение ЭВМ превращает постепенно прямые методы в основной инструмент решения вариационных задач.

Метод вариаций. Второе направление исследований — это изучение необходимых и достаточных условий, которым должна удовлетворять функция x (t ), реализующая экстремум функционала J (x). Его возникновение также связано с именем Эйлера. Предположим, что тем или иным способом построена функция x (t ).

Как проверить, является ли эта функция решением задачи? Первый вариант ответа на этот вопрос был дан Эйлером в 1744. В приведённой ниже формулировке этого ответа употребляется введённое в 60-х гг. 18 в. Ж. Лагранжем понятие вариации (отсюда название — В. и.), являющееся обобщением понятия дифференциала на случай функционалов.

Пусть x (t ) функция, удовлетворяющая условию (2), a h (t) — произвольная гладкая функция, удовлетворяющая условию h (to ) = h (T) = 0. Тогда величина

J (x + eh) = J*(e),

где e — произвольное действительное число будет функцией e . Вариацией dJ функционала J называют производную

(dJ*/de)e = 0.

Для простейшей задачи В. и.

Разлагая полученное выражение в ряд по степеням e, получим

где о (e) — члены более высокого порядка. Так как h (to ) = h (T ) = 0, то, проведя интегрирование по частям во втором интеграле, найдём

Пусть теперь x (t ) реализует экстремум. Тогда функция J*(e) имеет экстремум при e = 0. Поэтому величина dJ должна обратиться в нуль. Отсюда следует: для того чтобы функция x (t ) доставляла экстремум функционалу (1), необходимо, чтобы она удовлетворяла уравнению

называемому уравнением Эйлера.

Это — дифференциальное уравнение 2-го порядка относительно функции x (t ). Необходимое условие dJ = 0 может быть применено в ряде случаев для эффективного отыскания решения вариационной задачи, поскольку функция x (t ) необходимо должна быть решением краевой задачи x (to ) = xo , x (T ) = xT для уравнения (4). Если найдено это решение и оно единственно, то найдено тем самым и решение исходной вариационной задачи. Если краевая задача допускает несколько решений, то достаточно вычислить значение функционала для каждого из решений краевой задачи и выбрать из них то, которому отвечает наименьшее значение J (x ). Однако указанный путь обладает одним существенным недостатком: не существует универсальных способов решения краевых задач для обыкновенных (нелинейных) дифференциальных уравнений.

Поделиться:
Популярные книги

(Противо)показаны друг другу

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.25
рейтинг книги
(Противо)показаны друг другу

Школа Семи Камней

Жгулёв Пётр Николаевич
10. Real-Rpg
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Школа Семи Камней

Кодекс Охотника. Книга XXVI

Винокуров Юрий
26. Кодекс Охотника
Фантастика:
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXVI

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Я не князь. Книга XIII

Дрейк Сириус
13. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я не князь. Книга XIII

Машенька и опер Медведев

Рам Янка
1. Накосячившие опера
Любовные романы:
современные любовные романы
6.40
рейтинг книги
Машенька и опер Медведев

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Возвращение

Жгулёв Пётр Николаевич
5. Real-Rpg
Фантастика:
боевая фантастика
рпг
альтернативная история
6.80
рейтинг книги
Возвращение

Идущий в тени 8

Амврелий Марк
8. Идущий в тени
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Идущий в тени 8

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Идеальный мир для Социопата 2

Сапфир Олег
2. Социопат
Фантастика:
боевая фантастика
рпг
6.11
рейтинг книги
Идеальный мир для Социопата 2

Заставь меня остановиться 2

Юнина Наталья
2. Заставь меня остановиться
Любовные романы:
современные любовные романы
6.29
рейтинг книги
Заставь меня остановиться 2