Большая Советская Энциклопедия
Шрифт:
Приведём пример траектории Редже для рассеяния электрона в кулоновском поле ядра водородоподобного атома. Уровни энергии в этом случае определяются формулой Бора:
(n — главное квантовое число, Z — атомный номер; см. Атом), что даёт зависимость:
в которой целым положительным значениям l отвечают определённые уровни энергии системы En.
Для значений Е > 0 (выше порога) l (E)
(где k — волновое число, связанное с энергией соотношением
Траектории Редже явились основой систематики ядерно-стабильных частиц и резонансов. В отличие от систематики, основанной на симметрии частиц, эта систематика опирается на динамику взаимодействия. При помощи реджевской траектории a. (Е) можно систематизировать частицы с одинаковыми внутренними характеристиками и отличающимися на чётное число значениями спина. Группы частиц, объединённые в супермультиплеты, должны, следовательно, повторяться с различными значениями спинов (отличающимися на чётное число). Т. е. наряду с октетом барионов со спином 1/2 должны существовать октеты барионов со спином 5/2, 9/2 и т. д. Т. о., получается некоторый аналог периодической системы Менделеева и реджевские траектории, объединяющие частицы с одинаковыми внутренними характеристиками, аналогичны её столбцам.
Как показывает опыт, реджевские траектории для частиц являются приближённо линейными функциями от квадрата их масс (рис. 5). Траектория, на которой лежат резонансы с квантовыми числами (кроме l) вакуума (I = J = 0, чётность Р = + 1), играет важную роль для феноменологического описания процессов рассеяния, определяя полное сечение при очень высоких энергиях (она называются вакуумной траекторией, или траекторией Померанчука). Процессы, в которых происходит передача заряда, странности и др. квантовых чисел (например, p– + р ® pq + n), при феноменологическом анализе описываются траекториями Редже с соответствующими квантовыми числами («реджеонами»).
В релятивистской теории наряду с полюсами Редже появляются и точки ветвления. Однако структура особенностей в комплексной l– плоскости до конца ещё не выяснена.
На основе предположений о характере особенностей парциальных амплитуд построены различные реджеонные модели для описания процессов рассеяния и множеств. рождения при высоких энергиях.
Для изучения процессов С. в. успешно используются также мультипериферическая модель и описание реакций с помощью квазипотенциалов, учитывающих поглощение частиц.
На основе дисперсионных соотношений и предположения о характере особенностей в l– плоскости построены правила сумм, которые интегрально связывают резонансы в одном канале реакции с резонансами перекрёстного канала (т. н. «глобальная дуальность»). Дальнейшим развитием этого подхода является гипотеза локальной дуальности, согласно которой амплитуда процесса в каждом канале реакции определяется при низких энергиях резонансами, существующими в этом канале, а при высоких энергиях — резонансами из перекрёстных каналов. Гипотеза дуальности является отправной точкой для построения различных дуальных моделей.
Использование идей симметрии для динамического описания сильных взаимодействий
Существует несколько весьма плодотворных направлений в теории С. в., основанных на использовании внутренних симметрий С. в. для динамического описания процессов. К этим направлениям относится, в частности, т. н. алгебра токов, в которой сделаны шаги по объединению методов теории групп для рассмотрения симметрий и теоретико-полевых представлений, использующихся в методе дисперсионных соотношений. Идея алгебры токов основана на существовании сохраняющихся токов адронов. Одним из таких токов является электромагнитный (векторный) ток, закон сохранения которого отвечает закону сохранения электрического заряда. Благодаря изотопической инвариантности С. в. можно предполагать далее, что
Важным направлением в теории С. в. является теория т. н. калибровочных (компенсирующих) полей. Согласно этой теории, сохраняющимся в С. в. величинам (таким, как барионный и электрический заряды, изотопический спин, гиперзаряд) отвечает взаимодействие, переносимое частицами со спином, равным единице (векторными мезонами). Поскольку известно, что электромагнитные взаимодействия переносятся фотонами (имеющими спин 1) и существуют веские основания предполагать, что слабые взаимодействия переносятся векторными частицами (т. н. промежуточными векторными бозонами), успешное развитие калибровочных теорий С. в. позволяет предполагать наличие глубокой внутренней связи между всеми тремя типами взаимодействий и надеяться на создание единой теории этих взаимодействий.
Лит.: Боголюбов Н. Н., Медведев Б. В., Поливанов М. К., Вопросы теории дисперсионных соотношений, М., 1958; Логунов А. А., Нгуен Ван Хьеу, Основные тенденции в развитии теории сильных взаимодействий, «Физика элементарных частиц, и атомного ядра (ЭЧАЯ)», 1974, т. 5, в. 3; Логунов А. А., Месшвиришвили М. А., Хрусталев О. А., Ограничения на поведение сечений упругих и неупругих процессов, гам же, 1972, т. 3, в. 1; Теория сильных взаимодействий при больших энергиях. Сб. статей, пер. с англ., М., 1963; Швебер С., Бете Г., Гофман Ф., Мезоны и поля, пер. с нем., т. 2, М., 1957; Коллинз П., Сквайре Ю. Дж., Полюса Редже в физике частиц, пер. с англ., М., 1971; Фейнман P., Взаимодействие фотонов с адронами, пер. с англ., М., 1975; Иден Р., Соударения элементарных частиц при высоких энергиях, пер. с англ., М., 1970.
А. А. Логунов, С. С. Герштейн.
Рис. 3. Дифференциальные сечения рассеяния при различных энергиях Е протонов (p) и антипротонов (p) на протонах как функция квадрата переданного импульса: — t = 2p2(1 — cosJ, где p — импульс, a J — угол рассеяния в системе центра инерции частиц. Угловая зависимость сечения такая же, как при дифракции на «чёрном» шарике с плавно уменьшающейся к краям поглощательной способностью (на шарике с «размытым» краем).
Рис. 4 к ст. Сильные взаимодействия.
Рис. 1. Полные эффективные сечения s рассеяния на протонах p±– мезонов, К±– мезонов, протонов (р) и антипротонов (p): а — в интервале энергий до 10 Гэв; б — при энергиях выше 6 Гэв (разные значки — измерения на различных ускорителях).
Рис. 2. Схематическое изображение столкновения частиц в системе их центра инерции, а — упругое столкновение; б — неупругий процесс; 1 — центральная область вылета вторичных частиц, 2, 3 — фрагментации частиц а и b.