Чтение онлайн

на главную

Жанры

Большое, малое и человеческий разум
Шрифт:

Сказанное подводит нас к вопросу о точности, с которой должны быть определены условия «организации» Большого Взрыва. Ситуация выглядит поразительной, и я попытался выразить ее карикатурой (рис. 1.30), на которой Творец выискивает сверхкрошечную точку в фазовом пространстве, соответствующую начальным условиям, при которых будущая вселенная приобретет привычный нам вид. Творцу необходимо определить положение точки в фазовом пространстве с указанной фантастической точностью (1010^123). Число, о котором идет речь, столь велико, что мне не удалось бы выписать его в ряд, даже используя в качестве нулей все элементарные частицы вселенной.

Рис. 1.30.

Для создания вселенной,

похожей на нашу, Творцу пришлось бы найти немыслимо крошечную точку в фазовом пространстве и воткнуть в нее столь же крошечную иголку (ни точку, ни острие иголки на рисунке не удалось изобразить из-за малости размеров!). Выбранная точка должна была содержать лишь 1010^123 часть общего объема фазового пространства!

Я начал изложение с проблемы удивительной точности и согласованности физики и математики. Затем я попытался очень кратко рассказать о втором начале термодинамики, которое многие считают «приблизительным» и не оправдавшим возлагавшихся на него надежд (наверное, потому, что оно связано с понятиями случайности и вероятности), но которое на самом деле отражает удивительно точные закономерности. Говоря о вселенной, мы обязаны оценить точность условий создания ее исходного состояния. Эта точность позднее должна быть отражена и в той будущей, еще не созданной теории, которая позволит объединить квантовую теорию и общую теорию относительности. В следующей главе я продолжу рассказ о процессах, объектах и задачах будущей теории.

Глава 2. Тайны квантовой механики

В гл. 1 я попытался показать, что структура окружающего нас физического мира очень сильно зависит от законов математики (как это было показано на рис. 1.3), причем точность, с которой математика описывает фундаментальные физические аспекты, иногда представляется просто поразительной и заставляет вспомнить название знаменитой лекции Юджина Вигнера «Непостижимая эффективность математики в естественных науках». Список блестящих математических описаний природных явлений действительно выглядит весьма впечатляюще. Сюда входят, например:

Геометрия Евклида, которая на расстояниях порядка метров имеет точность порядка диаметра атома водорода. Как я уже отмечал в гл. 1, общая теория относительности не позволяет ей быть абсолютно точной, однако для практических целей точность евклидовой геометрии всегда исключительно высока.

Механика Ньютона, точность которой доходит до10– 7 (для дальнейшего повышения точности необходимо учитывать релятивистские эффекты).

Электродинамика Максвелла, которая в сочетании с квантовой механикой достаточно хорошо описывает взаимодействия при изменении масштаба в 1035 раз, т. е. от размеров элементарных частиц до межгалактических расстояний.

Эйнштейновская теория относительности, о которой я уже рассказывал в гл. 1. В той области, где она применима (и где она обобщает и включает в себя квантовую механику), точность этой теории доходит до 10– 14, что на семь порядков превышает точность механики Ньютона.

Квантовая механика, которая является темой этой главы и также представляет собой весьма точную теорию. Например, в квантовой электродинамике, представляющей собой сочетание квантовой механики, электродинамики Максвелла и специальной теории относительности, точность некоторых расчетов доходит до 10– 11. В частности, можно особо отметить, что используемая в квантовой электродинамике так называемая «система единиц Дирака» включает в себя вычисленное значение магнитного момента электрона 1,001159652(46), которое прекрасно согласуется с экспериментально найденным значением 1,0011596521(93).

Особенно важно то, что во всех указанных теориях применение математических методов не только обеспечивает исключительную эффективность и точность описания физической картины, но и представляет интерес для развития самой математики, поскольку некоторые наиболее плодотворные идеи ее развития возникли именно на основе теоретических построений физики. В качестве примера можно указать обширные разделы математики, возникновение и развитие которых было обусловлено физическими исследованиями:

• теория действительных чисел;

• геометрия Евклида;

• математический анализ и теория дифференциальных уравнений;

• геометрия симплексов;

• дифференциальные формы и уравнения в частных производных;

• геометрии Римана и Минковского;

• теория комплексных чисел;

• теория гильбертова пространства;

• теория функциональных интегралов... и т. д.

Одним из наиболее ярких примеров такого рода является, безусловно, дифференциальное и интегральное исчисление, которое Ньютон и ряд других выдающихся математиков разработали в качестве математического основания обширного раздела физики, ныне известного под названием ньютоновской механики. Дальнейшее использование разработанных ими методов для решения различных чисто математических задач оказалось исключительно благотворным для развития самой математики.

В гл. 1 я уже говорил о масштабах физических объектов, измеряемых в пределах от фундаментальных единиц (длина Планка и время Планка, которые столь малы, что для описания даже самой маленькой элементарной частицы нам необходимо увеличивать их в 1020 раз), через размеры и время жизни человека (интересно, что мы, люди, являемся наиболее устойчивыми структурами физического мира), и наконец до возраста и радиуса Вселенной. При этом я особо подчеркивал важность того, что мы используем два совершенно разных метода для описания объектов физического мира, которые лежат на разных концах пространственно-временной шкалы. Как показано на рис. 2.1 (он просто повторяет рис. 1.5 первой лекции), мы используем квантовую механику для описания малых, квантовых уровней активности и классическую механику на уровне крупных объектов. Я обозначу эти уровни через U (унитарность, квантовый уровень) и С (классический уровень) и еще раз хочу подчеркнуть, что мы имеем дело, по-видимому, с совершенно разными законами в зависимости от масштаба изучаемых объектов.

Рис. 2.1.

Мне, как и любому другому физику, представляется очевидным, что если мы правильно понимаем законы квантовой физики, то из нее должны выводиться законы классической физики. Проблема, однако, заключается в том, что на практике мы всегда пользуемся либо классическим, либо квантовым уровнем описания, что, к сожалению, напоминает подход древних греков, для которых было абсолютно естественным наличие в мире двух совершенно различных наборов законов природы, действующих соответственно на Земле и в мире Идей или божественных установлений. Величие и мощь подхода, развитого Галилеем и Ньютоном, заключаются именно в объединении этих двух наборов, позволяющем понимать мир в рамках единой системы физических законов. Похоже, что современная физика вновь возвращает нас к ситуации, когда мы имеем разные наборы законов для классического и квантового уровней описания мира.

Во избежание недоразумения мне бы хотелось сразу оговорить одно обстоятельство, связанное с рис. 2.1. Помещая рядом с именами Ньютона, Максвелла и Эйнштейна слова «классический уровень» или «детерминизм», я вовсе не хочу сказать, будто эти ученые сами верили в детерминизм поведения Вселенной. Мы просто не знаем этого точно, хотя почти с уверенностью можно утверждать, что Ньютон и Максвелл, например, не разделяли этой точки зрения, в то время как Эйнштейн ее поддерживал. Пометки «детерминизм» и «вычислимость» относятся лишь к созданным этими учеными теориям, а не к их личной вере. Точно так же к квантовому уровню добавлены слова «уравнение Шредингера», хотя я не думаю, что сам Шредингер считал свое уравнение пригодным для описания «всей физики». Я еще вернусь к этому вопросу, а пока просто напоминаю читателю, что люди и создаваемые ими теории — вовсе не одно и то же.

Поделиться:
Популярные книги

Черный Маг Императора 4

Герда Александр
4. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 4

Ярослав Умный. Первый князь Руси

Ланцов Михаил Алексеевич
1. Ярослав Умный
Фантастика:
альтернативная история
6.71
рейтинг книги
Ярослав Умный. Первый князь Руси

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

Предатель. Ты не знаешь о сыне

Безрукова Елена
3. Я тебя присвою
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Предатель. Ты не знаешь о сыне

Вечная Война. Книга V

Винокуров Юрий
5. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
7.29
рейтинг книги
Вечная Война. Книга V

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

Титан империи 7

Артемов Александр Александрович
7. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 7

Ученик

Губарев Алексей
1. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Ученик

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Специалист

Кораблев Родион
17. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Специалист

Чехов. Книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
альтернативная история
5.00
рейтинг книги
Чехов. Книга 3

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII