Борьба за скорость
Шрифт:
Подшипник может сам питать себя воздушной смазкой.
Нет вращения, и вал — «шип» — лежит в подшипнике, касаясь его. В зазоре между ними воздух. Но зазор этот не сплошной, не кольцевой — пока шип лежит в подшипнике.
Вал начинает вращаться. Он захватывает воздух, увлекает его за собой, гонит в узкую часть зазора, туда, где вал касается подшипникового кольца.
Растут обороты, и все сильнее вгоняет вал «под себя» воздух. При 400–500 оборотах в минуту воздух уже настолько собрался с силами, настолько сильно давит там, что вал
Теперь вместо трения шипа о подшипник есть только трение воздуха о воздух, одного воздушного слоя по другому. А это трение ничтожно — ведь вязкость воздуха очень мала — в 100 раз меньше, чем, например, у керосина. Поэтому малы и потери на трение. Поэтому и мал нагрев — этот главный бич подшипника на больших скоростях. Всего на 1,5–2 градуса повышается температура при воздушной смазке.
И так как вал сам увлекает воздух в смазочный зазор, не нужно заботиться о питании подшипника смазкой. Появляется воздушная подушка — и дальше все идет само собою, «как по маслу».
Подшипник, который сам себя смазывает, — это самый простой из всех подшипников.
Кстати, есть и подшипники с масляной смазкой, которые сами себя смазывают.
Такие подшипники создала порошковая металлургия.
Спрессованный под давлением подшипник из железа и графита получается не сплошным, а пористым, подобно губке. Как губка впитывает воду, так и пористый подшипник впитывает своими микроскопическими порами масло. При работе оно постепенно выдавливается из этих крохотных «масленок» и смазывает подшипник.
Но долго работать без смазки пористый подшипник не может. Как выжатую губку, его нужно снова наполнить. И остается главное — масло, нагревание и все связанные с ними беды. Для очень больших скоростей пористый подшипник не годится.
Воздушная смазка выводит нас из тупика, куда заводят большие скорости. Она оправдала себя в работе. И сейчас советские заводы выпускают быстроходные машины с подшипниками на воздушной смазке. Таковы, например, суперцентрифуги на 21 тысячу оборотов.
< image l:href="#"/>Подпятник с воздушной смазкой (разобран).
Там, где отказывает обычный подшипник, ему на смену приходит новый, простой и надежный, с воздушной смазкой, который отлично работает при сверхвысоких скоростях. Надо отметить, что применять его можно пока лишь там, где невелики нагрузки.
Прежде чем создать такой подшипник, пришлось немало поработать. Ведь то, что мы рассказали о нем, — это идея, принцип, а от идеи до конструкции — путь далекий. Теория и опыт, расчеты и испытания, поиски наилучшего решения — таков этот путь.
Нужно было узнать, когда и как возникает воздушная подушка, как работает с ней подшипник, не мешает ли ему трение металла о металл.
Нужно
Чтобы появилась воздушная подушка, нужен зазор. Величина его должна быть переменной. Она должна меняться — там, куда вал увлекает за собой воздух, быть меньше. Только тогда, вгоняя воздух в суженный зазор, и можно его сжать, уплотнить, создать упругую подушку. Только тогда и может вал отделиться от опоры и повиснуть в воздухе.
Хорошо, если подшипник цилиндрический.
Там это условие выполняется само собою.
Когда вал не вращается, он касается цилиндра, и зазор при взгляде на него «в профиль» имеет форму серпа. Вал начнет вращаться, он погонит воздух в узкий конец «серпа». Появится воздушная подушка. И вал приподнимает сам себя — «всплывает».
А если подшипник другой формы? Например, как у подпятника в центрифуге? Нужно было создать такую конструкцию опоры, чтобы выполнялось основное условие воздушной смазки — зазор переменной толщины.
С. А. Шейнберг сделал так.
На круглой металлической пластинке — колодке — он расположил по радиусам ребра. Эти ребра, возвышаясь над ней, не дают верхней тонкой пластинке плотно прилегать к колодке. Затем он соединил их винтами. Там, где ребер нет, пластинки сошлись вплотную. Там, где есть ребра, они не могли сойтись. В результате верхняя пластинка изогнулась, на ней образовались волны.
Появились волны, появился зазор переменной толщины — то, что было нужно.
Когда пята будет вместе с ротором вращаться, она загонит воздух в этот зазор, сожмет его — и возникнет воздушная прослойка. Всего несколько тысячных долей миллиметра отделяет пяту от подпятника, но этого достаточно, чтобы весь ротор вращался в воздухе и трение почти исчезло.
Сотни часов может работать подшипник с воздушной смазкой при огромных числах оборотов с ничтожными потерями на трение, ничтожным нагревом.
Так ведется борьба с трением в машинах, где скоростям сейчас ведут счет на десятки тысяч оборотов.
Их требует промышленность. Ведь в некоторых шлифовальных станках шпиндель делает 100 тысяч и больше оборотов в минуту. Ведь широко применяется теперь сверхскоростное фрезерование.
Советскими инженерами созданы сверхскоростные шпиндели для расточки и шлифовки небольших отверстий — на 120 тысяч, а в опытных образцах и на 200 тысяч оборотов в минуту.
Большая скорость здесь совершенно необходима — без нее нельзя добиться нужной чистоты обработки.
Очень высокие скорости необходимы не только для шлифования.
Летчику и моряку нужны гироскопические приборы — креномер, гирокомпас и другие, в которых с большой скоростью вращается волчок. Скорость вращения волчков в этих приборах доходит до нескольких десятков тысяч оборотов в минуту.
Гироскоп — основа автопилота, который без помощи человека ведет по заданному курсу самолет или ракету.