Борьба за скорость
Шрифт:
Вес и размеры электронных приборов очень малы. Они работают бесшумно. Ими легко управлять, их легко регулировать. Они совершают чудеса. Крохотный прибор может «повелевать» огромным механизмом, следя за работой и управляя ею: электронные приборы усиливают передаваемую мощность в миллиарды раз…
Советские ученые и инженеры одержали немало побед в области электроники.
О ней теперь пойдет у нас речь.
Сколько хитроумия, изобретательности, тонкого искусства экспериментатора, сложных теоретических расчетов, опытов вложено в победы над микромиром!
Физика взвесила и измерила, изучила частицы, размеры которых так исчезающе малы, что воображение отказывается себе их представить, что цифры уже теряют свою осязательность.
Настоящую же величину частичек из атомного мира бессильно представить наше воображение. И тем более ярко выступает перед нами мощь современной науки. На практике убеждаемся в правильности ее заключений о том, что недоступно нашим чувствам.
Когда мы слушаем радио или видим звуковой кинофильм, когда радиолокатором «достаем» до Луны, когда в десятках различных приборов послушно работает покоренный электрон, — это ведь торжество науки. Без нее невозможны все эти удивительные достижения техники.
Достижения электроники. 1. Электронный микроскоп дает увеличение в 100 тысяч — 200 тысяч раз, что позволяет видеть частицы размером до одной миллионной доли сантиметра — крупные молекулы. В оптический микроскоп, дающий увеличение до 2 тысяч раз, нельзя увидеть частицы, которые меньше двух стотысячных долей сантиметра. 2. Телевизор с электронной разверткой дает изображение из полумиллиона элементов и в ближайшем будущем сможет дать из полутора миллионов, что соответствует яркой, четкой проекции на киноэкране. Телевизор с механической разверткой давал изображение, состоящее из 19 200 элементов. 3. Электронная счетная машина может рассчитать траекторию метеорита быстрее, чем он летит от границ атмосферы до Земли. Арифмометр закончил бы такой расчет намного позднее. 4. Сверхвысокочастотные электронные лампы позволяют получать электромагнитные колебания частотой в десятки миллиардов в секунду. Машинные генераторы давали ток с частотой до 30 тысяч колебаний в секунду. 5. Электронный осциллограф (прибор для записи колебаний) регистрирует колебания с частотой до миллиарда в секунду. Осциллограф другой системы записывает колебания с частотой не более 10 тысяч в секунду. 6. В бетатроне — ускорителе заряженных частиц — электроны разгоняются до скорости, которая лишь на 0,03 процента меньше скорости света. Скорость снаряда дальнобойного орудия — около 1,5 километра в секунду. 7. Электронные приборы — реле — могут включать электрическую цепь в миллионные доли секунды. Электромагнитное реле срабатывает за тысячные доли секунды. 8. Радиолокатор обнаруживает самолет на расстоянии 10 километров за 0,00007 секунды. Звукоулавливателю понадобилось бы 30 секунд, а за это время современный скоростной самолет успеет пролететь около 10 километров.
Заглянем сейчас внутрь электронных приборов.
Основа электронной машины — электрон. Эта мельчайшая частичка материи чрезвычайно легка. 27 нулей нужно поставить в дроби после запятой перед первой значащей цифрой, чтобы написать, какую долю грамма весит электрон. В миллиардной доле грамма больше миллиарда миллиардов электронов!
Электрон — самый маленький электрический заряд. Электроны могут не только кружиться вокруг ядра в атоме, как планеты вокруг Солнца.
Ракета, преодолев притяжение Земли, путешествует между планетами. Победив
Скорость, быстрое движение помогает ей разорвать оковы тяжести.
Электроны, которые непрочно удерживались ядром атома металла, освобождаются от него. Они становятся свободными, перестают быть спутниками ядра, членами его системы. Если скорость их достаточно велика, они побеждают притяжение электрических сил заряженных атомов и становятся свободными не только от своего «родного» атома, но и от всех атомов металла.
Как получить такие быстрые электроны? Что может заставить электроны покинуть металл?
Нагрев, высокая температура.
Теплота — это движение, и чем больше нагрет металл, тем быстрее двигаются его частицы, атомы и электроны.
Сначала немного, а потом все больше электронов срывается с поверхности. Возникает поток электронов, лавина электрических частиц.
Они невидимы, но дают знать о себе. Бомбардируя экран, покрытый слоем сернистого цинка, они заставляют его светиться. На светлом фоне экрана со слоем хлористого калия под ударами электронов появляются темные пятна.
Впрочем, так будет при одном условии: если электроны полетят в пустоте. В плотном воздухе или газе им не удастся добраться до экрана — движению помешают встречные газовые частички. И потому раскаленный металл — источник электронов — помещают в баллон, из которого выкачан воздух. Если в баллоне еще остается разреженный газ, то электронная лавина бомбардирует атомы газа.
Бомбардировка эта производит переполох в атомном мире. В него-ворвалась заряженная частица — быстро летящий электрон. Конечно, попасть в ядро такому электрону невозможно, его энергии недостаточно, чтобы прорваться к сердцу атома. Но тем не менее, в атоме происходят крупные события.
Влетевший электрон принес энергию. Это не может не отразиться на состоянии атома. Он возмущен вмешательством. Ведь там, в атомном мире, существует строгий порядок. По вполне определенным путям — орбитам — и только по ним разрешается двигаться вокруг ядра его спутникам-электронам. Однако они могут перескакивать с одной орбиты на другую. Энергия, принесенная извне, и помогает им это сделать.
Но даром такой прыжок для атома не проходит, ибо каждый электрон обладает совершенно определенной энергией, своей для каждой орбиты. И прыжок электрона на другую орбиту сопровождается изменением его энергии: излишек ее должен уйти. Он и уходит в виде излучения, света. Потрясенный, как говорят физики, возбужденный, атом испускает свет. Он стремится вернуться к прежней, «спокойной» жизни. Свечение атома сигнализирует нам об этих потрясениях.
Вот, кстати, почему светится раскаленный газ. Его атомы быстро двигаются, сталкиваясь между собою, их энергия увеличивается и становится достаточной, чтобы при столкновении происходили перескоки электронов с орбиты на орбиту. Попав на другую орбиту, электрон тотчас же стремится перейти на орбиту, ему разрешенную, избавившись от излишка энергии, которую он получил. Излучается порция световой; энергии — квант, излучается свет, характерный для атома данного газа. Все это происходит, разумеется, в невообразимо малые доли секунды.
И электрический ток, поток электронов в разреженном газе, также возбуждает его атомы.
Под ударами электронов газ начинает светиться. Красным, зеленым, синим цветом светятся надписи реклам. Белый свет, напоминающий солнечный, дают «лампы дневного света».
В электронных приборах удается сейчас достигнуть разрежения в тысячемиллиардную долю атмосферы! Такая пустота господствует далеко за пределами атмосферы, в межпланетном пространстве.
Она нужна в электронном приборе для того, чтобы расчистить дорогу электронам. Ведь и при давлении в миллион раз меньше атмосферного каждый кубический сантиметр пространства содержит еще около 10 тысяч миллиардов молекул воздуха.