Целостный метод - теория и практика
Шрифт:
Теорема 4.4.5.Элементы а и е разложимы на части, реализующие части процессов в и d:
а = {а0, ?a}; а0 ? A0; ?a ? ?a; А = {A0, ?a};
e = { e0, ?е }; e0 ? E0; ?е ? ?e; E= { E0, ?e};
В качестве обобщения сформулируем следующий результат.
Теорема 4.4.6. Элементы а, е (а ? А, е ? Е) и элементарные процессы в, d (в ? В, d ? D) в модели системы S разложимы на части, образующие структуры Ca, Ce и процессы Рa, Ре основной Sa и дополнительной Sе систем.
Следуя доказанному, сформулируем следующие результаты.
Системный
Модель основного системного процесса Рa имеет вид:
Рa = < { B0, ?d }, W, ?p >.
Системный процесс взаимодействия, в свою очередь, представит собой объединение элементарных процессов взаимодействия dо и процессов обеспечения ограничений на допустимое изменение характеристик взаимодействия ?в при «передаче взаимодействия» через процессы достижения цели. Отсюда следует, что
Модель дополнительного системного процесса Ре имеет вид:
Ре =< { D0, ?a }, W, ?p >.
Следуя (4.4.7) и (4.4.8), можно сформулировать следующие определения структур.
Модель основной системной структуры Ca имеет вид:
Ca = < { A0, ?e }, W, ?c >.
Модель дополнительной системной структуры Сe имеет вид:
Сe = < {?a, E0 }, W, ?c >.
• Исходя из (4.4.4), где доказано, что система – это объединение процесса и структуры, определим основную и дополнительную системы.
Модель основной системы Sa имеет вид:
Sa = <{Pa, Ca }, W, ?>; Sa = <{A0, B0, ?d, ?e}, W,?>
Модель дополнительной системы Se имеет вид:
Se= <{Pe, Ce}, W, ?>; Se = <{?a, ?в, D0, E0}, W, ?>
Другими словами, полная система S — это объединение полного системного процесса Р и полной системной структуры С, основная система Sa — это объединение системного процесса достижения цели Pa и структуры для его реализации Сa, а дополнительная система Se — это объединение системного процесса взаимодействия Pe и структуры для его реализации Ce.
На основании этого можно получить следующие модели:
C = < {A0, ?a, E0, ?e,}, W, ?c >,
P = < {В0, ?в, D0, ?d }, W, ?р >.
В полученных математических моделях разделены полные, основные и дополнительные системные объекты: системы, процессы, структуры, элементы и элементарные процессы.
• Элементарная система, элементарная структура и элементарный процесс. Элементы а, е представляют собой, по сути, элементарные структуры, а в сочетании с элементарными процессами они образуют элементарные системы – элементарные целенаправленные системы sa и элементарные системы взаимодействия se:
sa= < {а, b }, ?, ?, ?0 >; sa = < a ? b, ?, ?0 >;
se= < { e, d }, ?, ?, ?0 >; se = < e ? d, ?, ?0 >.
Каждая i-ая система sai образует с некоторой системой seij элементарную полную систему sij, реализующую элементарную часть системного процесса достижения цели (т.е. реализующую преобразование предмета труда, начиная от момента поступления его на вход элемента аi и кончая моментом поступления его на вход элемента aj):
sij=sai ? seij; sij= <{ai, bi, eij, dij}, wi, wij, фi, фij >,
где wi, wij, фi, фij определяют операции и отношения на множестве-носителе системы sij, напр., операции ?,? и отношения ?, ? и др. Число систем sij равно числу элементов aj, со входами которых соединен выход элемента ai.
Цель fij, реализуемая системой sij, будет состоять из двух компонентов: цели fi, описывающей изменение параметров перерабатываемого ресурса в целенаправленной части sai системы sij и изменения ?ijfi происходящего во взаимодействующей части seij при транспортировании или складировании предмета труда до момента поступления на вход aj :
fij = { fi, ?ijfi }
Очевидно, что система sij имеет общую часть sai с каждой системой sik.
Теорема 4.4.7.Система sij разложима на cистемы: основную целенаправленную saij и дополнительную seij:
sij= saij ? seij;
saij= < { ai0, bi0, ?еij, ?aij }, wj, wy, фi, фij >;
seij = < {?ai, ?вi, dij0, eij0 }, wj, wy, фi, фij >.
Справедливость (4.4.16) очевидна из предыдущего изложения.
Теорема 4.4.8. Модели полной, основной и дополнительной систем S, Sa, Sе представляют собой теоретико-множественные объединения элементарных систем sij, sаij, sеij:
S = < ? sij, W, ? >;
Sa = <? sаij, W, ? >;
Se = <? sеij, W, ?>.
• В результате теоретико-множественного объединения sij, sаij, sеij сформируются множества-носители систем S, Sa, Se и, кроме того, объединение множества операций и отношений W' и ?', определенных на элементарных системах: