Чтение онлайн

на главную - закладки

Жанры

Целостный метод - теория и практика
Шрифт:

Элементарным процессом взаимодействияd назовем процесс взаимодействия между определенными двумя и только между этими двумя элементарными процессами достижения цели системы, d ? D?. Здесь D? – множество всех элементарных процессов взаимодействия в системе.

Элементом взаимодействияе назовем элемент, предназначенный для осуществления одного и только одного элементарного процесса взаимодействия, е ? Е?. Здесь Е? – множество всех элементов взаимодействия, которые используются для построения данной системы. В Е? также допускается «рождение» и «смерть» элементов. Иногда удобно будет считать, что элементы е содержат ключ, имеющий только два логических

состояния: «взаимодействие разрешено» и «взаимодействие исключено»; это может облегчить описание перехода от одного варианта модели системы к другому.

Элементарной цельюf0 назовем цель, достигаемую каким-либо одним элементарным процессом достижения цели, f0 ? F?. Здесь F? – множество множеств целей системы S, соответствующих всем возможным изделиям и продуктам системы (и их модификациям); множество SF? — множество всех потенциально возможных продуктов (изделий) системы и их модификаций. Множество F ? F? соответствует одному из изделий SF системы S. Надо отметить, что в большинстве своем технологические системные процессы по замыслу строятся, как процессы поочередного достижения цели систем «по частям». Например, по отдельности изготавливаются детали и блоки прибора. Соединение их в прибор, т.е. в систему-изделие, приводит к достижению цели, которая не может быть описана, как математическая функция с аргументами в виде элементарных целей (с помощью «дерева целей», напр.) и описывается только понятием целого: свойства прибора, (достижение которых было целью данной технологии), как целого «больше», чем любая комбинация свойств частей прибора, как элементов целого.

Будем рассматривать только тот случай, когда все множества A?, B?,D?, E?, F?, S? конечны. Пересечение каждой пары множеств А?, В?, D?, Е?, F?, S? представляет собой конечное пустое множество.

Модель полной системы. Полной системой S назовем совокупность взаимосвязанных элементов a ? A, е ? Е (A ? A?, E ? E?) и осуществляемых ими элементарных процессов в ? В, d ? D (B ? В? D ? D?), предназначенную для достижения цели F, связанной с выпуском определенного изделия (продукта) SF, SF ? SF?, F ? F?.

Модель полной системы (математическую модель полной системы) S определим, как конечную алгебраическую систему

S= < { A, В, D, Е }, W, ? >,

состоящую из множества-носителя {А, B, D, Е}, множества операций W={W1, W2, ..., Wl} и множества предикатов ?={?1, ?2, ..., ?r}.

Для описания всех необходимых взаимосвязей в модели системы (4.4.1) используем два множества: W? и ??. Множество W? является множеством всех операций, используемых при анализе и синтезе всех моделей S из множества S?. Множество операций W используется для определенной модели S. Множество S? – это множество моделей системы S, причем каждая модель S отражает одну технологию изготовления одного изделия, выпуска одного продукта (или его модификации). Множество W? может содержать теоретико-множественные операции объединения, пересечения и другие.

Множество ?? содержит предикаты, используемые для описания отношений на множествах-носителях всех моделей системы. Множество главных предикатов ? содержит предикаты ?1-?r, определяющие отношения связи на {A, В, D, E}, которые должны соответствовать цели F изготовления «изделия SF», F ? F?, SF ? SF?. Переход от модели системы S для одной технологии изготовления изделия к модели другой технологии осуществляется путем замены одной совокупности A,B,D,E,W,? на другую. Используя эти совокупности для технологий изготовления всех изделий, можно составить множество S? всех моделей S данной системы, S ? S?..

В модели (4.4.1) для конкретной реализации системы S, значение предиката ?j ? ? равно 1 (истинно), если взаимосвязи между элементами множества-носителя соответствуют выбранной технологии изготовления изделия. Множество главных предикатов ? описывает взаимосвязи, необходимые для конкретной реализации S. Минимально необходим, независимо от природы системы, набор предикатов, устанавливающих такое подмножество отношений взаимосвязи, которое можно представить связным подграфом, без петель, покрывающим все вершины графа отношений. Кроме того, с помощью элементов множества ? и введения дополнительных предикатов можно описать различные технологические маршруты изготовления узлов и блоков, сборки изделия, подготовки документов, разработки проектов, изготовления управленческого решения и т.д. Переход от модели изготовления изделия F к модели для изготовления другого изделия осуществляется путем замены множества главных предикатов ? на другое. Реализовать необходимые переходы от одной модели к другой можно установлением набора состояний «взаимодействие разрешено» и «взаимодействие исключено» в элементах е ? Е.

• В процессе формирования конкретной модели системы используются операции множества W (напр. при декомпозиции системы), состав которого определяется в зависимости от задач анализа и синтеза системы. Во многих важных приложениях достаточно, если множество-носитель образуете с W решетку или алгебру Кантора.

Формирование конкретной модели системы с определенным набором элементов из {A, B, D, E} и множества ? может производиться следующим образом. Будем считать, что множества A?,B?, D?, E? определены, как наборы элементов, пригодных для всех возможных конкретных реализаций S.

Вначале устанавливается некоторое отношение на множестве B?, т.е. выбираются и упорядочиваются процессы b ? В, B ? B?. Тем самым упорядочивается набор элементарных процессов достижения цели, который должен обеспечить системный процесс достижения цели, для реализации которого, в данном случае, нужна система S. Одновременно устанавливается необходимость обеспечения взаимодействий для пар процессов из В?, определяются требования к элементарным взаимодействиям со стороны каждого процесса b, b ? В?.

Затем устанавливается отношение на паре множеств В?, A?, определяются и упорядочиваются основные элементы из А?, обеспечивающие выбранный набор процессов из В?, А ? А?, В ? В?.

Параллельно устанавливается некоторое отношение на паре множеств В?, D? и определяется набор элементарных процессов взаимодействия d? D, D ? D?, обеспечивающих взаимодействие между элементарными процессами b, b ? В. При этом, для учета ограничений на элементарные процессы d ? D со стороны элементов множества А, устанавливается отношение на паре A, D.

И, наконец, устанавливаются отношения на паре D?, Е?, позволяющие сформировать набор элементов е ? Е, E ? E?, которые войдут в данную реализацию системы. Для учета ограничений на элементы е ?Е со стороны элементов множеств А и В должны быть установлены соответствующие отношения на парах А, Е и В, D.

• В процессе формирования модели конкретной реализации S описанная последовательность многократно повторяется и образует, в конечном счете, системный процесс достижения цели (модель которого описана в разделе 4.2) в некоторой системе-субъекте по созданию системы S. В качестве ресурсов выступают описания возможностей использования различных видов ресурсов для достижения некоторой глобальной цели, поставленной перед создаваемой системой; в качестве методов выступают описания различных процессов, которые можно реализовать для достижения цели.

Поделиться:
Популярные книги

Титан империи 2

Артемов Александр Александрович
2. Титан Империи
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Титан империи 2

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Огни Аль-Тура. Желанная

Макушева Магда
3. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.25
рейтинг книги
Огни Аль-Тура. Желанная

Личник

Валериев Игорь
3. Ермак
Фантастика:
альтернативная история
6.33
рейтинг книги
Личник

Приручитель женщин-монстров. Том 14

Дорничев Дмитрий
14. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Приручитель женщин-монстров. Том 14

Идеальный мир для Лекаря 26

Сапфир Олег
26. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 26

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Гром над Академией. Часть 2

Машуков Тимур
3. Гром над миром
Фантастика:
боевая фантастика
5.50
рейтинг книги
Гром над Академией. Часть 2

Имперец. Том 5

Романов Михаил Яковлевич
4. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
6.00
рейтинг книги
Имперец. Том 5

Бастард

Осадчук Алексей Витальевич
1. Последняя жизнь
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.86
рейтинг книги
Бастард

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель