Чтение онлайн

на главную - закладки

Жанры

Человеческое познание его сферы и границы
Шрифт:

Отношение между данными и выводами сохраняет, однако, большое значение, поскольку основание для веры непременно должно обнаруживаться после достаточного анализа в данных и только в данных. (Я здесь включаю в число данных и принципы, используемые во всяких выводах, какие могут встретиться.) Из этого следует, что данные, относящиеся к какой-либо отдельной вере, могут быть гораздо более многочисленными, чем это кажется с первого взгляда. Возьмем опять случай с воспоминанием. Тот факт, что я вспоминаю какое-либо происшествие, является свидетельством, хотя и не решающим, того, что происшествие имело место. Если я нахожу современную происшествию запись о нем, то это — подтверждающее свидетельство. Если я нахожу много таких записей, то подтверждающее свидетельство усиливается. Если происшествие является таким, которое, подобно прохождению Венеры перед солнечным диском, делается почти достоверным

хорошо установленной научной теорией, то этот факт должен быть прибавлен к записям как добавочное основание уверенности. Таким образом, в то время, как имеются верования, которые являются только заключениями доказательств, отсутствуют такие, которые в рациональной разработке знания являлись бы только посылками. Говоря это, я выражаюсь в терминах эпистемологии, а не логики.

Таким образом, эпистемологическая предпосылка может быть определена как предложение, которое имеет какую-то степень рационального правдоподобия благодаря самой себе, независимо от ее отношений к другим предложениям. Каждое такое предложение может быть использовано для сообщения некоторой степени правдоподобия предложениям, которые или следуют из него, или находятся к нему в отношении вероятности. Но на каждой стадии происходит некоторое уменьшение первоначального запаса правдоподобия; это аналогично тому, как состояние уменьшается налогами на наследство каждый раз, когда оно наследуется. Проводя аналогию несколько дальше, мы можем сказать, что внутреннее правдоподобие похоже на состояние, приобретаемое в результате собственных усилий человека, тогда как правдоподобие, получающееся в результате доказательства, подобно наследству. Эта аналогия ограничивается тем, что человек, который составил состояние, может также и наследовать состояние, тогда как каждое состояние должно быть обязанным своим происхождением не наследованию, а чему-либо другому.

В этой главе я намереваюсь обсудить правдоподобие, во-первых, в отношении к математической вероятности, затем в отношении данных, затем в отношении субъективной уверенности и, наконец, в отношении к рациональному поведению.

Б. Правдоподобие и частота

Я намереваюсь сейчас обсудить вопрос: при каких обстоятельствах правдоподобие предложения о выводится из частоты fx при данном некотором fx? Другими словами, если «fa» есть предложение «a есть x», то при таких обстоятельствах правдоподобие предложения «альфа есть бета» выводится из одного или более предложений формы: члены а, являющиеся членами p, составляют отношение m/n».

Этот вопрос, как мы увидим, не совсем такой общий; как тот, который мы должны поставить, но желательно обсудить его первым.

Обыденному здравому смыслу, по-видимому, ясно, что в типичных случаях математической вероятности она равна степени правдоподобия. Если я вытаскиваю наудачу карту из колоды, то степень правдоподобия предложения «карта будет красная» будет в точности равна степени правдоподобия предложения «карта будет не красная», и, следовательно, степень правдоподобия каждого предложения равна 1/3, если 1 представляет собой достоверность. В отношении игральной кости степень правдоподобия предложения «выпадет 1» совершенно та же, что и предложения «выпадет 2», или 3, или 4, или 5, или 6. Отсюда все выведенные частоты математической теории могут быть интерпретированы как выведенные степени правдоподобия.

В этом переводе математических вероятностей в степени правдоподобия мы пользуемся принципом, в котором математическая теория не нуждается. Математическая теория просто считает случаи; а при переводе мы должны знать или допускать, что каждый случай равно правдоподобен. Необходимость в этом принципе признавалась с давних пор; он был назван принципом недостаточного основания, или (Кейнсом) принципом индифферентности. Мы рассмотрели этот принцип в связи с теорией Кейнса, а теперь мы должны рассмотреть этот принцип сам по себе. Но перед обсуждением его я хочу отметить, что он не нужен в математической теории вероятности. В этой теории нам нужно знать только численность различных классов. Этот принцип требуется только тогда, когда математическая вероятность рассматривается как мера правдоподобия.

То, в чем мы нуждаемся, есть нечто вроде следующего: «Если дан объект а, отношении которого мы хотим знать, какую степень правдоподобия приписать предложению «a есть p», и если дано, что единственно относящееся к делу знание, которое мы имеем, есть «а есть а», тогда степень правдоподобия предложения «a есть p» будет представлять собой математическую вероятность, измеряемую отношением числа членов, общих для альфа, и бета, к числу членов альфа.

Иллюстрируем это еще раз примером с самым высоким человеком

в Соединенных Штатах и шансом, что он живет в штате Айова. Здесь, во-первых, мы имеет описание d, приложимое к одному и только одному человеку из числа названных людей А1, А2, … an, где n есть число жителей Соединенных Штатов. Это значит, что одно и только одно из предложений «d= Аr» (где r обозначает любого жителя от 1 до n) известно как истинное, но мы не знаем, какое именно. Если это действительно есть все наше относящееся к делу знание, то мы предполагаем, что любое из предложений «d=Ar' столь же правдоподобно, как и любое другое. В этом случае каждое имеет правдоподобие 1/n. Если в штате Айова имеется m жителей, то предложение «d живет в штате Айова» эквивалентно дизъюнкции m предложений «d= Аr» и, следовательно, имеет m раз правдоподобие любого из них, поскольку они взаимно исключают друг друга. Следовательно, оно имеет степень правдоподобия, измеряемую дробью m/n,

Конечно, в вышеприведенной иллюстрации предложения «d = Ar» не все одного уровня. Свидетельство позволяет нам исключить детей, людей низкого роста и, возможно, женщин. Это показывает, что применение этого принципа связано с затруднениями, но это не значит, что он ложен.

Случай с вытаскиванием карты из колоды ближе подходит к осуществлению условий, требуемых принципом. Здесь описание «d» есть «карта, которую я собираюсь вытащить». Все 52 карты имеют то, что мы можем рассматривать как названия: «двойка пик» и так далее Мы имеем, таким образом, 52 предложения «d = Аr», из которых одно и только одно истинно, но мы не имеем никаких данных, которые склоняли бы нас в пользу одного, а не какого-либо другого. Следовательно, правдоподобие каждого равно 1/52. Если мы это признаем, то это связывает правдоподобие с математической вероятностью.

Мы можем, следовательно, сформулировать как возможную форму «принципа индифферентности» следующую аксиому: «Если дано описание d, относительно которого мы знаем, что оно применимо к одному и только одному из объектов а1, a2, … an, и если дано, что мы не имеем знания относительно того, к какому из этих объектов приложимо это описание, тогда n предложений «d=ar» (1 меньше или равно r меньше или равно n) все равно правдоподобны и, следовательно, каждое имеет правдоподобие, измеряемое дробью 1/n».

Эта аксиома является более ограниченной, чем принцип недостаточного основания, как он обычно формулируется. Мы должны исследовать, будет ли она достаточной, а также имеем ли мы основание верить ей.

Сначала сравним вышеизложенное с принципом индифферентности Кейнса, рассмотренным нами в предшествующей главе. Вспомним, что этот принцип гласит: вероятности p и q в отношении данного свидетельства равны, если (1) свидетельство симметрично по отношению к p и q, (2) p и q «неделимы», то есть ни одно из них не является дизъюнкцией предложений той же самой формы, что и оно само. Мы решили, что это можно упростить: мы говорили, что нужно, чтобы p и q были бы значениями одной пропозициональной функции, скажем p = f(a) и q = f(b), чтобы «fx» не содержало ни a, ни b, и что, если свидетельство содержит упоминание a, скажем, в форме f(a), то оно должно также содержать y(b) и, наоборот, где yx в свою очередь не должно упоминать а или b. Этот принцип является до некоторой степени более общим, чем сформулированный в предшествующем абзаце: он имплицирует последний, но я сомневаюсь, имплицирует ли последний его. Мы, возможно, можем принять более общий принцип и переформулировать его следующим образом: «Если даны две пропозициональные функции fx и yx, ни одна из которых не упоминает о или b, или если и упоминает их, то упоминает симметрично, тогда, при данных ya и yb, два предложения fa и fb имеют равное правдоподобие».

Этот принцип, если его принять, позволяет нам выводить правдоподобность из математической вероятности и делает все предложения математической теории пригодными для измерения степеней правдоподобия в случаях, к которым применима математическая теория.

Попробуем применить вышеупомянутый принцип к случаю с числом n шаров в сумке, где известно, что каждый шар или белый, или черный; стоит вопрос: какова вероятность, что в сумке содержится х белых шаров? Лаплас допускал, что каждое значение x от 0 до A равно вероятно, так что вероятность данного х есть 1/(n + 1). С чисто математической точки зрения это правильно, если только мы начинаем с пропозициональной функции: х = число белых шаров. Но если мы начинаем с пропозициональной функции: х есть белый шар, то мы получим совсем другой результат. В этом случае имеется много способов получения х шаров. Первый шар может быть получен n способами; когда он получен, следующий может быть получен n — 1 способами и так далее Таким образом, число способов получения х шаров есть

Поделиться:
Популярные книги

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

Кодекс Охотника. Книга VII

Винокуров Юрий
7. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.75
рейтинг книги
Кодекс Охотника. Книга VII

Назад в СССР: 1984

Гаусс Максим
1. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
4.80
рейтинг книги
Назад в СССР: 1984

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Дядя самых честных правил 8

Горбов Александр Михайлович
8. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 8

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

Стеллар. Трибут

Прокофьев Роман Юрьевич
2. Стеллар
Фантастика:
боевая фантастика
рпг
8.75
рейтинг книги
Стеллар. Трибут

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Лорд Системы 11

Токсик Саша
11. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 11

Золотая осень 1977

Арх Максим
3. Регрессор в СССР
Фантастика:
альтернативная история
7.36
рейтинг книги
Золотая осень 1977

Я не князь. Книга XIII

Дрейк Сириус
13. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я не князь. Книга XIII

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Раб и солдат

Greko
1. Штык и кинжал
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Раб и солдат