Чтение онлайн

на главную

Жанры

Черные дыры и молодые вселенные
Шрифт:

Другой способ взглянуть на этот процесс – считать члена пары частица-античастица, падающей в черную дыру (скажем, античастицу), реальной частицей, но идущей по времени в обратном направлении. Таким образом, античастицу, падающую в черную дыру, можно рассматривать как частицу, вылетающую из черной дыры, но в обратном времени. Достигнув точки, в которой пара частица-античастица изначально материализовалась, она рассеивается гравитационным полем так, чтобы двигаться по времени в прямом направлении.

Таким образом, квантовая механика позволяет частице вырваться из черной дыры, чего не допускает классическая механика. Однако в ядерной и атомной физике есть много других ситуаций, когда существует некоторый барьер, который по классическим принципам частицы преодолеть не могут, но через который могут проложить тоннель согласно принципам квантовой механики.

Толщина

барьера вокруг черной дыры пропорциональна размеру черной дыры. Следовательно, только очень немногие частицы могут вырваться из такой большой черной дыры, каковой предположительно является X-I Лебедя, но из черных дыр поменьше частицы могут просачиваться весьма быстро. Тщательные расчеты показывают, что выпущенные частицы имеют тепловой спектр, соответствующий температуре, возрастающей с той же скоростью, с какой убывает масса черной дыры. Температура черной дыры с массой Солнца составляет всего лишь одну десятимиллионную градуса относительно абсолютного нуля. Тепловое излучение, покидающее черную дыру с такой температурой, совершенно поглотилось бы радиационным фоном Вселенной. С другой стороны, черная дыра с массой всего миллиард тонн, то есть первобытная черная дыра размером примерно с протон, имела бы температуру около 120 миллиардов градусов Кельвина, что соответствует энергии в несколько десятков миллионов электрон-вольт. При такой температуре черная дыра могла бы порождать электронно-позитронные пары и частицы пулевой массы, такие как фотоны, нейтрино и гравитоны (предположительно несущие гравитационную энергию). Первобытная черная дыра выделяла бы энергию с мощностью порядка 6000 мегаватт, что равно мощности шести больших ядерных электростанций.

Поскольку черная дыра испускает частицы, ее масса и размеры постоянно уменьшаются. Это облегчает другим частицам возможность проделать тоннель наружу, и потому эмиссия будет продолжаться, постоянно возрастая, пока в конце концов черная дыра не сойдет на нет. Таким образом, в конечном итоге все черные дыры во Вселенной испарятся, однако для этого понадобится действительно долгое время: черная дыра с массой Солнца просуществует 10^66 лет. С другой стороны, первобытная черная дыра должна почти полностью испариться за десять миллиардов лет, что прошло со времени Большого Взрыва, когда, как нам известно, возникла Вселенная. Такие черные дыры теперь должны испускать жесткое гамма-излучение с энергией около 100 миллионов электрон-вольт.

Подсчеты, сделанные Доном Н. Пейджем, работавшим тогда в Калифорнийском технологическом институте, и мной, основывались на измерениях космического фона гамма-радиации со спутника SAS-2 и показали, что средняя плотность первобытных черных дыр должна была быть меньше, чем примерно двести дыр на кубический световой год. Локальная плотность в нашей Галактике могла быть в миллион раз больше этой величины, если бы первобытные черные дыры сконцентрировались в «гало» галактик – тонком облаке быстро движущихся звезд, куда погружена каждая галактика, – а не распределились бы равномерно по всей Вселенной. Из этого следует, что ближайшая к Земле первобытная черная дыра, вероятно, находится по меньшей мере на том же расстоянии, что и Плутон.

Последняя стадия испарения черной дыры происходит так быстро, что заканчивается страшным взрывом. Какова мощность этого взрыва, зависит от того, как много в черной дыре разновидностей элементарных частиц. Если, согласно широко распространенному сейчас мнению, все частицы состоят из шести разновидностей кварков, в последнем взрыве выделится энергия, равная энергии почти десяти миллионов водородных бомб мощностью в одну мегатонну каждая. С другой стороны, альтернативная теория, выдвинутая Р. Хейдждорном из CERN, Европейской организации по ядерным исследованиям в Женеве, утверждает, что существует бесконечное множество элементарных частиц все большей массы. По мере того как черная дыра делается все меньше и горячее, она испускает все больше и больше разнообразных частиц, и, возможно, взрыв окажется в 100 000 раз мощнее, чем рассчитанный на основе кварковой гипотезы. Поэтому наблюдение взрыва черной дыры дало бы нам очень ценную информацию о физике элементарных частиц – информацию, которую не получить никаким иным способом.

Взрыв черной дыры произведет мощный выброс высокоэнергетичного гамма-излучения. Хотя его можно заметить детекторами гамма-лучей на спутниках или воздушных шарах, было бы непросто запустить детектор достаточного размера, чтобы получить существенный шанс уловить значительное

число гамма-фотонов от одного взрыва. Возможно, когда-нибудь при помощи космического челнока удастся построить большой детектор гамма-лучей на орбите, но более легкой и дешевой альтернативой было бы использовать в качестве детектора верхние слои земной атмосферы. Высокоэнергетичные гамма-лучи, входя в атмосферу, произведут ливень электронно-позитронных пар, которые вначале будут проходить через атмосферу со скоростью выше скорости света (свет замедляется взаимодействием между молекулами). Таким образом, электроны и позитроны произведут нечто вроде звукового барьера, вроде ударной волны в электромагнитном поле. Такую ударную волну, называемую излучением Черепкова, можно выявить с земли как зримую световую вспышку.

Предварительные эксперименты Нейла А. Портера и Тревора К. Уикса из дублинского Юниверсити-колледжа показали, что, если черные дыры взрываются так, как предсказывает теория Хейдждорна, за век в нашей области Галактики случается менее двух взрывов черной дыры на кубический световой год. Из этого следует, что плотность первобытных черных дыр меньше, чем 100 миллионов дыр на кубический световой год.

Наверное, существует возможность значительно увеличить чувствительность таких наблюдений, и даже если они не дадут никакого положительного свидетельства о первобытных черных дырах, то все равно будут представлять собой большую ценность. Если наблюдения установят низкий верхний предел плотности таких черных дыр во Вселенной, они покажут, что ранняя Вселенная должна была быть очень ровной и не турбулентной.

Большой Взрыв схож со взрывом черной дыры, но в гораздо большем масштабе. Поэтому можно надеяться, что, поняв, как черные дыры порождают частицы, мы придем к аналогичному пониманию, как Большой Взрыв породил все во Вселенной. В черной дыре материя сжимается и пропадает навек, но на ее месте возникает новая материя. Поэтому, может быть, существовала какая-то более ранняя фаза Вселенной, когда материя сжималась, чтобы опять возникнуть после Большого Взрыва.

Если материя, сжавшаяся в черную дыру, имела какое-то сальдо электрического заряда, получившаяся черная дыра будет иметь такой же заряд. Это означает, что черная дыра имеет тенденцию притягивать члены пар виртуальных частиц-античастиц с противоположным зарядом и отталкивать члены с таким же зарядом. Следовательно, черная дыра будет испускать преимущественно частицы с зарядом того же знака, что имеет сама, и быстро разрядится. Аналогично, если сжимающаяся материя имеет сальдо момента импульса, черная дыра будет вращаться и преимущественно испускать частицы, отбирающие ее момент импульса. Причина, почему черные дыры «запоминают» электрический заряд, момент импульса и массу сжимающейся материи, которая «забывает» все остальное, заключается в том, что эти три величины сочетаются с полями, действующими на большом расстоянии: в случае заряда – с электромагнитным полем, а в случае момента импульса и массы – с гравитационным.

Эксперименты Роберта X. Дика из Принстонского университета и Владимира Брагинского из Московского государственного университета показали, что не существует далеко действующих полей, которые соответствовали бы квантовому свойству, называемому барионным числом (барионы – это класс частиц, включающий в себя протоны и нейтроны). Следовательно, черная дыра, получившаяся в результате сжатия множества барионов, забудет свое барионное число и будет излучать равное количество барионов и антибарионов. Поэтому, когда черная дыра исчезнет, она нарушит один из самых нежно любимых законов физики частиц – закон сохранения барионов.

Хотя гипотеза Бекенштейна о конечной энтропии черных дыр для своей стройности требует, чтобы черные дыры излучали тепло, тем не менее, на первый взгляд, кажется истинным чудом, что тщательные расчеты квантовой механики, касающиеся возникновения частиц, говорят о появлении излучения с тепловым спектром. Объясняется это тем, что выпущенные частицы проделывают тоннель из черной дыры, о которой внешний наблюдатель не знает ничего, кроме ее массы, момента импульса и электрического заряда. Это означает, что все сочетания или конфигурации выпущенных частиц, имеющих одну и ту же энергию, момент импульса и электрический заряд, одинаково вероятны. В самом деле, возможно, что черная дыра выпустит телевизор или десятитомник Пруста в кожаном переплете, но число конфигураций частиц, соответствующее таким экзотическим возможностям, бесконечно мало. Гораздо большее число конфигураций соответствует излучению со спектром, близким к тепловому.

Поделиться:
Популярные книги

Проклятый Лекарь. Род III

Скабер Артемий
3. Каратель
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь. Род III

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Война

Валериев Игорь
7. Ермак
Фантастика:
боевая фантастика
альтернативная история
5.25
рейтинг книги
Война

Под маской моего мужа

Рам Янка
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Под маской моего мужа

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Измена. Право на счастье

Вирго Софи
1. Чем закончится измена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на счастье

Газлайтер. Том 12

Володин Григорий Григорьевич
12. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 12

Сиротка

Первухин Андрей Евгеньевич
1. Сиротка
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Сиротка

Охота на эмиссара

Катрин Селина
1. Федерация Объединённых Миров
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Охота на эмиссара

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12