Чудесные явления на небе
Шрифт:
Радиотелескоп — прибор для улавливания радиоизлучения небесных светил
В начале 1955 года американские ученые Берк и Франклин, изучая космические радиоволны с помощью чувствительного радиотелескопа, неожиданно обнаружили новый, неизвестный ранее очень сильный источник радиоизлучения. По своему характеру он резко отличался от других подобных источников: его излучение носило весьма нерегулярный характер и состояло из серий коротких
Вскоре обнаружилось еще более любопытное явление. Оказалось, что новый источник меняет свое положение относительно звезд. Это означало, что он расположен очень близко от Земли, быть может даже в пределах солнечной системы.
И действительно, через некоторое время удалось установить, что удивительный источник космического радиоизлучения не что иное, как планета Юпитер.
На первый взгляд может показаться странным, что радиоизлучение Юпитера не было замечено раньше. Однако это легко объясняется его сходством с грозовыми разрядами. Возможно, что ученым и раньше удавалось принимать «радиопередачи» с Юпитера, но они не обращали на них внимания, полагая, что имеют дело с обычными атмосферными помехами. Однако в настоящее время внеземное происхождение всплесков, отмеченных записями Берка и Франклина, не вызывает сомнений. Но какова природа этого излучения? Что за таинственная радиостанция посылает к нам с Юпитера свои сигналы?
Юпитер находится на огромном расстоянии от Солнца и получает мало тепла. Известно, например, что температура верхнего слоя облаков в атмосфере Юпитера составляет всего около — 110 °C. Поэтому тепловое радиоизлучение Юпитера является настолько слабым, что современная радиоастрономическая аппаратура не могла бы его обнаружить.
Какова же все-таки природа мощного радиоизлучения Юпитера?
Около двух лет тому назад по этому поводу было высказано любопытное предположение, связывающее радиоизлучение Юпитера с происходящими в его атмосфере явлениями грозового характера. В самом деле, водородная атмосфера этой гигантской планеты содержит многочисленные облака, состоящие, по-видимому, из капелек метана и кристалликов аммиака.
Не вызывает сомнений, что такие облака, если они действительно существуют, способны накапливать электрический заряд. А это может иногда приводить к возникновению грозовых разрядов.
Грозовая гипотеза представлялась довольно убедительной, однако за последнее время был получен ряд новых данных, которые не только не прояснили вопроса, но, наоборот, еще сильнее его запутали. Оказалось, что, во-первых, наиболее сильное излучение радиоволн всегда исходит из одной и той же точки на Юпитере, а во-вторых, на основании целого ряда наблюдательных данных было высказано предположение о том, что источник радиоволн лежит на поверхности планеты, значительно ниже слоя облаков. Природа радиоизлучения Юпитера пока что так и остается невыясненной. Конечно, рано или поздно ученым удастся расшифровать «радиосигналы» Юпитера, как они в свое время расшифровали световой луч.
А если учесть, что «радирует» не только Юпитер, но и другие планеты, например Венера, то в распоряжение астрономов поступает новое могучее средство изучения природы планет, которое дает возможность по-новому подойти к решению многих сложных задач.
Но, пожалуй, наибольший интерес представляет собой изучение радиоголосов далеких космических объектов, лежащих за пределами нашей солнечной системы. В настоящее время известно уже около двух тысяч подобных «радиостанций», расположенных в различных областях неба.
Оказалось, что главной космической «радиостанцией» является разреженный газ, заполняющий
Радиоастрономические исследования пролили новый свет и на один из важнейших вопросов современной физики — проблему происхождения космических лучей.
Используя данные радиоастрономии, советские ученые В. Л. Гинзбург и И. С. Шкловский обнаружили тесную связь между космическими лучами и вспышками так называемых сверхновых звезд. В момент такой вспышки, происходящей под действием каких-то пока еще неизвестных нам физических процессов, звезда неожиданно раздувается, сбрасывая с себя газовую оболочку. В некоторых случаях может произойти даже полный разлет всего материала звезды. Подобный взрыв сопровождается выделением чудовищной энергии.
Достаточно сказать, что иногда вспыхнувшая звезда в течение нескольких дней излучает такое же количество света, как несколько миллиардов Солнц. После вспышки на месте взорвавшейся звезды возникает газовая туманность, образовавшаяся из ее распыленных остатков.
Одна из таких туманностей, получившая за свою форму название Крабовидной, находится в созвездии Тельца, на месте вспышки сверхновой звезды 1054 года. Несколько лет назад было доказано, что Крабовидная туманность является мощным источником радиоизлучения. Это означает, что в ней имеется множество электронов, движущихся с огромными скоростями. Такие электроны представляют собой своеобразные космические радиостанции. Перемещаясь в межзвездных магнитных полях, они излучают радиоволны. А там, где имеются быстрые электроны, должно присутствовать и огромное количество других заряженных частиц, движущихся с колоссальными скоростями, — космических лучей. Таким образом, было обнаружено, что колыбелью космических лучей являются газовые оболочки сверхновых звезд.
Космические лучи сами по себе также являются вестниками далеких миров, они способны поведать нам немало интересного о том, что происходит в таинственных глубинах Вселенной. Они могли бы, например, рассказать, где расположены их источники. Но, к сожалению, частицы космических лучей обладают электрическим зарядом. Благодаря этому они во время своих скитаний в мировом пространстве под действием межзвездных магнитных полей в конце концов теряют свое первоначальное направление. Однако теория указывает, что в составе первичных космических лучей должны присутствовать особые частицы — так называемые гамма-фотоны, не имеющие заряда. Такие частицы должны двигаться строго прямолинейно, сохраняя первоначальное направление. И если бы удалось обнаружить в космических лучах подобные фотоны, можно было бы определить направление на их источники. Тогда можно было бы говорить еще об одном могущественном методе изучения Вселенной. Подобные исследования становятся вполне реальными с созданием искусственных спутников Земли и космических ракет.
С их помощью стало возможным доставить измерительную аппаратуру в верхние слои атмосферы и за ее пределы. Тем самым ученым впервые удалось «вырваться» со своими приборами на просторы космоса и избавиться от помех со стороны воздушной оболочки Земли. Открылись замечательные перспективы непосредственного исследования новых вестников далеких миров. Это, несомненно, явится толчком к необычайно быстрому расширению наших представлений о Вселенной, поможет овладеть новыми силами природы, новыми источниками энергии и поставить их на службу человеку.