Десять великих идей науки. Как устроен наш мир.
Шрифт:
Что также становилось ясным, так это существование проблем с теорией множеств, которую хотели представить как основание математики. Может быть, неприятности теории множеств можно проследить до подлинной проблемы, заключающейся в самом понятии множества, которое выглядит выхолощенным? Может быть, понятие множества слишком широко для математиков? В начале двадцатого века, приблизительно в то же время, когда Рассел и Фреге сражались со своими проблемами, эта точка зрения получила определенную поддержку в форме аксиомы выбора. Эта аксиома является логическим двойником пятого постулата геометрии Евклида (о параллельных прямых, глава 9) и привлекла к себе огромное внимание. Ее простейшая форма выглядит кроткой как овечка: если у вас есть набор множеств, то вы можете составить новое множество, выбирая по одному элементу из каждого множества и добавляя их в свою тележку для покупок. Все мы собираем таким способом элементы множеств в супермаркете, называя вновь сконструированное множество своим шопингом. Кто мог бы возразить против такой процедуры собирания множества?
Однако овечка сбрасывает шкуру и оборачивается волком, как только мы
Существуют три позиции, которые можно занять по отношению к аксиоме выбора, и каждый математик, сознательно или бессознательно, выбирает одну из них. Одна позиция, которую занимают математические страусы, заключается в том, чтобы игнорировать проблему, которую представляет эта аксиома, и просто продолжать работать как ни в чем не бывало. Это точка зрения всех физиков, большая часть которых вообще не подозревает, что здесь есть какая-то проблема, и только отрешенно пожмет плечами, если привлечь к ней их внимание и объяснить, в чем дело. Затем имеются математические социальные работники, которые осведомлены о проблеме и используют аксиому выбора для логического доказательства лишь как последнюю спасительную соломинку. Они отчаянно пытаются найти альтернативный маршрут среди аксиом, какими бы извилистыми ни становились их аргументы. И, наконец, существуют математические святые, поистине блюдущие обет безбрачия, когда дело доходит до аксиомы выбора, которым на нее противно даже смотреть, рассматривающие любое опирающееся на нее доказательство как ничтожное.
Если математика не является в чистом виде ответвлением логики, что заставляют предполагать все эти неудачи, то какие еще дополнительные составляющие заложены в ней? Чтобы раскопать одну вероятную составляющую, мы должны обратиться к сыну шорника и наиболее трудно понимаемому, но и наиболее влиятельному из философов восемнадцатого века, возможно, на четверть шотландцу, Иммануилу Канту (1724-1804). В своем обсуждении метафизического познания, представляющего собой философское познание, выходящее за пределы опыта, в своей книге Kritik der reinen Vernunft(Критика чистого разума, 1781), Кант вводит различие между «синтетическими» и «аналитическими» суждениями. Аналитическое суждение, в котором предикат (свойство) предмета может быть выявлен путем только рассуждения, не приносит нового знания, как, например, высказывание «морковь является овощем». Согласно логическим позитивистам начала двадцатого века, принявшим и уточнившим этот термин, истинность аналитического суждения зависит только от значений составляющих его слов и правил грамматики, управляющих их сочетанием. Однако синтетическое суждениеявляется таким, в котором предикат не содержится в предмете, например, «эта роза — красная», поскольку не все розы красные; такие утверждения несут новое знание. Далее, эти категории подразделяются на суждения a priori, для которых оценка их истинности не зависит от свидетельства опыта, и суждения a posteriori, для которых оценка истинности определяется в опыте.
Кант предположил, что синтетические суждения a priori, которые выражают новое знание, но являются не связанными с опытом, представляют собой подходящие объекты для философского исследования. Такие суждения включают в себя утверждения о пространстве и времени, которые, с его точки зрения, неоспоримы, и восприятие которых каким-то образом встроено в наши мозги. Для Канта принципы геометрии Евклида и свойства натуральных чисел были синтетическими суждениями a priori. С точки зрения Канта, теоремы математики представляют собой «евклидизацию» свойств пространства и времени, которая некоторым образом выявляет работу нашей нервной системы (это, разумеется, не тот термин, который он использовал) и наши способы восприятия.
Идею о том, что в натуральных числах присутствует нечто врожденное, являющееся непосредственно очевидным синтетическим априорным свойством мира, датский математик Луитцен Эгбертус Ян Брауэр (1881-1966), один из создателей топологии, в своей докторской диссертации, защищенной в 1907 г. в Амстердамском университете, развил в философию математики, известную как интуиционизм. Брауэр отмел кантовский взгляд на геометрию как на синтетическую априорную конструкцию, который, на самом деле, уже был превращен в пыль тем, что пятый постулат Евклида, хотя он и согласуется с другими постулатами, можно заменить другими, не создавая противоречия (как мы видели в главе 9). То есть Брауэр признал, что Кант был неправ, предполагая, что евклидова геометрия необходимоверна, поскольку существуют альтернативные геометрии, которые, как показывает опыт, лучше описывают пространство и время. Однако он не отверг в целом точку зрения Канта на математику как на средство изучения пространства и времени, он отверг только ее пространственную составляющую. Брауэр считал, что математика является выражением нашего осознавания времени, и пропагандировал тот взгляд, что натуральные числа происходят из последовательного просмотра набора объектов и временного разделения наших восприятий каждого из них, которое и представляет собой способ их различения. Брауэр, на самом деле, шел дальше: он был соллипсистом и считал, что все существующее, включая наши сознания, происходит из одного сознающего ума. Однако это точка зрения не является необходимой составляющей интуиционистской повестки дня, и на первый взгляд кажется, что нет необходимости говорить о ней далее (но позднее я еще коснусь с одобрением одного ее варианта).
Интуиционист принимает точку зрения, что натуральные числа имеют особый статус и что мы имеем прямую их интуицию: они не являются объектами, которые можно разработать лучше с помощью дальнейших описаний. Для того чтобы, следуя Брауэру, прийти к понятию натурального числа, мы должны замечать, как наше восприятие проводит различия между объектами, возникающие из упорядоченного во времени их просматривания, с отгибанием пальца всякий раз, как в поле нашего зрения попадает еще один. Из такого взгляда следует, что натуральные числа являются выражением нашей умственной активности. Подобным же образом арифметические операции, такие как сложение, следует считать изображениями умственных процессов, происходящих у нас в голове. Таким образом, чтобы подтвердить, что 2 + 3 = 1 + 4, мы должны выполнить множество операций; мы должны найти результат прибавления 2 к 3, так же как и 1 к 4, а затем должны удостовериться, что эти результаты равны друг другу.
У интуиционизма есть определенные неприятные следствия, которые не становятся немедленно очевидными при кратком описании, но которые необходимо отметить, поскольку они наносят удар в самое сердце классической логики. Это, в частности, случай, когда имеют дело с утверждениями о бесконечных наборах объектов, с которыми нельзя ассоциировать никакую умственную активность, связанную с их восприятием, поскольку у нас нет прямого опыта бесконечности. Например, Аристотель считал одним из столпов логики свой закон исключенного третьего, согласно которому любое утверждение либо истинно, либо ложно. Этот закон оказывается не выполняющимся в интуиционистской математике, поскольку в ней может существовать утверждение, которое не может быть доказано или является логически неразрешимым. В любом случае, это не та ситуация, в которой утверждение либо истинно, либо ложно, лишь бы это когда-либо могло быть доказано. Одним из следствий такого положения дел является то, что утверждение «неверно, что это предложение ложно» не эквивалентно утверждению «это предложение истинно». В то время как мы могли бы утверждать, что сказать «неверно, что в коробке с бесконечным числом шаров найдется шар не красного цвета» это то же, что сказать «все шары в коробке красные», интуиционист отверг бы такое заключение. Согласно интуиционизму, истинность утверждения «в коробке найдется шар не красного цвета» может быть установлена только перебором всех находящихся в коробке шаров, что невозможно в случае бесконечного набора. Еще одним следствием такого положения является невозможность доказать некоторое утверждение, используя аргумент reductio ad absurdum, то есть показать, что отрицание этого утверждения ложно или ведет к противоречию. Для интуициониста единственно приемлемым утверждением является такое, доказательство которого может быть явно построено и требует конечного числа шагов.
Давид Гильберт (1862-1943), прекрасный танцор и любитель пофлиртовать, был одним из наиболее влиятельных математиков двадцатого столетия. Он, как и Кант, родился в Кенигсберге, в Восточной Пруссии (по странному совпадению, Гольдбах тоже родился там). Он знаменит, в частности, тем, что сформулировал проблемы математики, которые, по его ощущениям, на грани веков, то есть в начале двадцатого века, являлись самыми выдающимися. С тех пор многие математики пытались разрешить представленные Гильбертом проблемы, сообщение о которых он сделал на Втором Международном конгрессе математиков в Париже в 1900 г. В лекции были представлены десять проблем; пока Гильберт работал над версией для публикации, их число выросло до двадцати трех. Влияние этих проблем — которые правильнее считать комплексом из группы проблем и намеков на проблемы, чем двадцатью тремя точно сформулированными отдельными экзаменационными вопросами — проистекает из того, что они представляли собой ответ на вопрос о том, что считать хорошей проблемой. Так, проблемы, предъявленные Гильбертом, стоили того, чтобы потратить время на их решение: они были трудными, но не выглядели нерешаемыми, а решение их осветило бы более широкий круг вопросов, чем те, которые они содержали.
Некоторые из этих проблем решены; некоторые оказались неразрешимыми; иные все еще подвергаются атакам исследователей. Некоторые из проблем, в том виде, в котором Гильберт их сформулировал, являются настолько грандиозными, что неясно, будет ли когда-нибудь получено их решение, столь же определенное, как для других проблем. Например, одной из грандиозных проблем была аксиоматизация физики, утверждение ее на кратком и надежном основании, как это проделал Евклид для своего варианта геометрии, а он, Гильберт, строго формализовал его в своем авторитетном труде Grundlagen der Geometric(Основания геометрии, 1899). То, что он здесь имел в виду, можно истолковать, как формулирование «общей теории всего». Однако большая часть этих проблем вполне опеределенна, особенно если их великодушно интерпретировать. Например, они включали доказательство континуум-гипотезы Кантора (которая оказалась недоказуемой) и гипотезы Риманао том, что некоторая определенная функция комплексного переменного zобращается в нуль на бесконечном множестве значений z, каждое из которых имеет действительную часть, равную 1/2 (рис. 10.9).