Чтение онлайн

на главную - закладки

Жанры

Десять великих идей науки. Как устроен наш мир.
Шрифт:

Рис. 10.9.Известно, что все решения уравнения 1 + 1/2 z+ 1/3 z+ 1/4 z+ … = 0, где z— комплексное число, лежат в окрашенной полосе между 0 и 1. Одна из форм гипотезы Римана утверждает, что все решения этого уравнения на самом деле лежат на центральной линии полосы (как обозначено маленькими кружками), на которой действительная часть равна 1/2 в каждом случае.

Последняя проблема может показаться не слишком уместной, но на самом деле она имеет фундаментальную важность для изучения простых чисел; она остается нерешенной и считается одной из важнейших нерешенных проблем математики. Позднее мы

встретимся с двумя другими проблемами Гильберта явно. Его второй проблемой, которую атаковал и решил отрицательно Гёдель, было доказательство непротиворечивости аксиом арифметики. Его десятой проблемой, так называемой Enischeidungsproblem(проблема решения), которую также атаковали и решили отрицательно Алан Тьюринг и Апонз Чёрч, было обнаружение процесса, посредством которого можно было бы определить, решаемо ли уравнение за конечное число шагов или нет.

Гильберт развил также философию математики, которая стала называться формализмом. Он видел математику как два плотно склеенных листа: один лист состоит из конечных расположений символов, получаемых с помощью применения определенных правил. Эти символы просто образуют определенный рисунок на странице и совершенно лишены смысла. Такие бессмысленные рисунки и есть то, что мы на самом деле понимаем под математикой. Даже аксиомы системы являются просто строчками значков, из которых вытек смысл, интеллектуальными трупами, а новые картинки выводятся из этих строчек посредством применения абстрактных правил. С этой точки зрения математики являются дизайнерами обоев. Единственные надежные доказательства, согласно Гильберту, являются финитистскими, а том смысле, что они являются финитными(то есть конечными) наборами символов, поскольку лишь такие наборы можно обозреть и проверить: безопасная математика — это финитная математика. На втором листе находится метаматематика, которая состоит из комментариев к реальной математике, она содержит комментарии типа «эта строка символов имеет сходство с другой», или «xнужно интерпретировать как особый знак для объекта», или «особая группа знаков указывает на то, что модель является полной», или «вот доказательство этого предложения». Мы можем представлять себе собственно математику как всевозможные расположения фигур на шахматной доске, а сопровождающую ее метаматематику как комментарии типа «для белых существует двадцать возможных первых ходов» или «в этой позиции следует шах и мат». Согласно формалистам, математика — это абстрактный символизм и порождение моделей: метаматематика наделяет символизм и модели значением для человека, она пропитывает значки «смыслом», она восстанавливает у трупов кровообращение.

Существует еще одна школа мысли о природе математики, платоновский реализм. Математики, принадлежащие к этой школе, с презрением отвергают точку зрения формалистов, считающих математику занятием, порождающим лишь бессмысленные строчки символов. Они также с презрением отвергают настойчивые утверждения интуиционистов о том, что математика является проекцией ума, что существование не имеет смысла, пока не проведено его доказательство, и что в отсутствии сознания нет никаких чисел и никаких параллельных линий. Подобно формалистам и интуиционистам, они признают недостаточность логицистического утверждения о том, что математика есть не более чем ветвь логики, и соглашаются с ними, что математика больше, чем логика.

Платоники, как называют этот род математиков, считают, что отсутствующая компонента является реальностью. Математики-платоники являются горняками в забое, разрабатывающими залежи предсуществующих закономерностей и пробивающие свои штреки киркой интеллектуальной рефлексии о мире. Они добывают истину, а не вводят ее. Для них числа являются реальными сущностями, а отношения между числами являются утверждениями об существующих объектах. Для них прямые линии, треугольники и сферы реальны как скалы, а арифметические истины (которые, напомним, означают любой вид математической истины, а возможно, даже более того) являются комментариями к некоему роду существования. Таким образом, они отвергают стерильное равнодушие формализма и субъективную запутанность интуиционизма и считают, что они являются такими же учеными, как и все мы. Они извлекают вневременные истины и находясь в яростной оппозиции к установке интуиционистов, считают, что истины существуют даже в том случае, если их доказательство еще не сформулировано.

Я рассмотрю теперь две из важнейших проблем Гильберта, те две, которые наносят удар в самое сердце философии математики и наиболее прямо исследуют ее возможности. Как я уже упоминал, одной из этих проблем является так называемая Entscheidungsproblem, проблема отыскания систематического способа для определения того, можно ли доказать некоторое утверждение символического языка с помощью аксиом этого языка. Атаку на эту проблему почти одновременно предприняли двое, одним был американский логик Алонзо Чёрч (1903-95), который ввел и разработан то, что он назвал -исчислением, а другим — британский математик Алан Мэтисон Тьюринг (1912-54), который ввел «логическую вычислительную машину», известную как машина Тьюринга. Эти два подхода изначально были различны на поверхностном уровне, но сотрудничество Чёрча и Тьюринга показало, что на самом деле они математически эквивалентны. Существует одна чрезвычайно важная сильная сторона математики, ее способность показывать эквивалентность с виду совершенно несравнимых вещей. Мы сосредоточим внимание на подходе Тьюринга, поскольку он имеет больше сходства со знакомым нам современным миром компьютеров, но не должно пройти незамеченным, что -исчисление Чёрча ассоциируется с используемым в них программным обеспечением и является его основой.

Машина Тьюринга является прибором, который претендует на имитацию действий человека, производящего некоторого рода алгоритмическое вычисление, то есть вычисление, выполняемое с помощью серии последовательных правил, и в котором мы теперь узнаем представление цифрового компьютера. К первой реализации программируемого цифрового электронного компьютера Тьюринга привела, конечно, его работа со взламыванием кодов во время Второй мировой войны на Блетчли-парк, на севере Лондона, а позже в Манчестере. Благодаря успехам во взламывании кодов, на счету Тьюринга оказалось приписываемое ему уменьшение продолжительности войны на месяцы, если не на годы, и, определенно, спасение многих тысяч жизней. К позору для Англии середины двадцатого столетия, Тьюринг, преследуемый законами и нравами общества того времени (он был гомосексуалистом), рано закончил свою жизнь.

Тьюринг искал путь для извлечения сущности того способа, которым человек производит вычисления, а затем исследовал ограничения этого процесса, пытаясь выяснить, возможен ли вопрос, ответ на который, как бы долго ни работал человек, не будет получен? Вариант процедуры, предложенный Тьюрингом, был заключен в капсулу прибора, состоящего из бесконечнодлинной ленты бумаги (в подражание бесконечному источнику бумаги и карандашей, которым может располагать человек-вычислитель при выполнении расчетов, делая записи промежуточных вычислений и затем записывая окончательный ответ) и считывающей и пишущей головки, которую можно запрограммировать так, чтобы она реагировала по определенным правилам на то, что записано в ячейке, проходящей мимо нее в данный момент (рис. 10.10). Эти правила можно было видоизменять и направлять на читающую головку с бумажной ленты.

Рис. 10.10.Версия машины Тьюринга. Машина состоит из бесконечно длинной ленты бумаги, разделенной на ячейки, в которых могут быть записаны символы (обычно, 0 или 1), и механизма, который может считывать эти символы, реагируя на считываемое в соответствии со своим внутренним состоянием в данный момент, меняя символы, если это требуется, и переходя к соседним ячейкам в соответствующем направлении. В этом представлении внутреннее состояние обозначается световым сигналом на одной из сторон считывающей головки. Правая диаграмма показывает возможный отклик: машина находится во внутреннем состоянии, обозначенном световым сигналом, и считывает 1; в результате она заменяет 1 на 0, меняет свое внутреннее состояние и сдвигает ленту на один шаг вправо.

Предположим, что ячейки бумажной ленты могут содержать либо 0, либо 1, а головка, в зависимости от своего внутреннего состояния, может считывать ячейку, записывать в ячейку и передвигать ленту на одну ячейку вправо или влево. Конкретная машина Тьюринга будет выполнять серию операций в зависимости от того, что она обнаружит на ленте, и в соответствии со способом реагирования, на который настроена ее головка. Например, если она обнаруживает на ленте 1, когда сама находится в состоянии «1», она может заменить на ленте 1 на 0, поменять свое внутреннее состояние на «2» и сдвинуть ленту на один шаг вправо. В новой ячейке может оказаться 0. Когда головка находится в состоянии «2» и считывает 0, она, возможно, запрограммирована на сдвиг ленты на один шаг влево, а если она считывает 1, то меняет 1 на 0 и сдвигает ленту на один шаг вправо. Если реакции головки искусно запрограммированы, машину можно использовать для выполнения даже самых сложных вычислений. Реальное конструирование такой головки и ее реакций может быть весьма сложной процедурой, а вычисления могут быть очень медленными, но здесь нас интересует лишь принцип вычислений, а не их эффективность.

Поделиться:
Популярные книги

Возвышение Меркурия. Книга 14

Кронос Александр
14. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 14

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Клан

Русич Антон
2. Долгий путь домой
Фантастика:
боевая фантастика
космическая фантастика
5.60
рейтинг книги
Клан

Кодекс Охотника. Книга V

Винокуров Юрий
5. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.50
рейтинг книги
Кодекс Охотника. Книга V

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1

Прометей: Неандерталец

Рави Ивар
4. Прометей
Фантастика:
героическая фантастика
альтернативная история
7.88
рейтинг книги
Прометей: Неандерталец

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Кровь Василиска

Тайниковский
1. Кровь Василиска
Фантастика:
фэнтези
попаданцы
аниме
4.25
рейтинг книги
Кровь Василиска

Последняя жена Синей Бороды

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя жена Синей Бороды

Фиктивная жена

Шагаева Наталья
1. Братья Вертинские
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Фиктивная жена

Бальмануг. Студентка

Лашина Полина
2. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. Студентка

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

Возвышение Меркурия. Книга 13

Кронос Александр
13. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 13

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора